Keywords: finite metric space; embedding of metric spaces; distortion; Lipschitz mapping; spaces $\ell_p$
@article{CMUC_1992_33_1_a6,
author = {Matou\v{s}ek, Ji\v{r}{\'\i}},
title = {Note on {bi-Lipschitz} embeddings into normed spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {51--55},
year = {1992},
volume = {33},
number = {1},
mrnumber = {1173746},
zbl = {0758.46019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a6/}
}
Matoušek, Jiří. Note on bi-Lipschitz embeddings into normed spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 51-55. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a6/
[Bou85] Bourgain J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52 (1985), 46-52. | MR | Zbl
[BMW86] Bourgain J., Milman V., Wolfson H.: On type of metric spaces. Trans. Amer. Math. Soc. 294 (1986), 295-317. | MR | Zbl
[JL84] Johnson W., Lindenstrauss J.: Extensions of Lipschitz maps into a Hilbert space. Contemporary Math. 26 (Conference in modern analysis and probability) 189-206, Amer. Math. Soc., 1984. | MR
[JLS87] Johnson W., Lindenstrauss J., Schechtman G.: On Lipschitz embedding of finite metric spaces in low dimensional normed spaces. in: {\sl Geometrical aspects of functional analysis} (J. Lindenstrauss, V.D. Milman eds.), Lecture Notes in Mathematics 1267, Springer-Verlag, 1987. | MR | Zbl
[Ma89] Matoušek J.: Lipschitz distance of metric spaces (in Czech). CSc. degree thesis, Charles University, 1990.
[Scho38] Schoenberg I.J.: Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 (1938), 522-536. | MR | Zbl
[Spe87] Spencer J.: Ten Lectures on the Probabilistic Method. CBMS-NSF, SIAM 1987. | MR | Zbl