When $(E,\sigma (E,E'))$ is a $DF$-space?
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 43-44
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $(E,t)$ be a Hausdorff locally convex space. Either $(E,\sigma (E,E'))$ or \newline $(E',\sigma (E',E))$ is a $DF$-space iff $E$ is of finite dimension (THEOREM). This is the most general solution of the problem studied by Iyahen [2] and Radenovič [3].
Let $(E,t)$ be a Hausdorff locally convex space. Either $(E,\sigma (E,E'))$ or \newline $(E',\sigma (E',E))$ is a $DF$-space iff $E$ is of finite dimension (THEOREM). This is the most general solution of the problem studied by Iyahen [2] and Radenovič [3].
Classification :
46A03, 46A04, 46A05, 46A20
Keywords: $DF$-spaces; countably quasibarrelled spaces
Keywords: $DF$-spaces; countably quasibarrelled spaces
@article{CMUC_1992_33_1_a4,
author = {Krassowska, Dorota and \'Sliwa, Wiesƚaw},
title = {When $(E,\sigma (E,E'))$ is a $DF$-space?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {43--44},
year = {1992},
volume = {33},
number = {1},
mrnumber = {1173744},
zbl = {0782.46006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a4/}
}
Krassowska, Dorota; Śliwa, Wiesƚaw. When $(E,\sigma (E,E'))$ is a $DF$-space?. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 43-44. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a4/
[1] Grothendieck A.: Sur les espaces $(F)$ et $(DF)$. Summa Brasil Math. 3 (1954), 57-123. | MR | Zbl
[2] Iyahen O., Sunday: Some remarks on countably barrelled and countably quasibarrelled spaces. Proc. Edinburgh Math. Soc. 15 (1966), 295-296. | MR
[3] Radenovič S.: Some remarks on the weak topology of locally convex spaces. Publ. de l'Institut Math. 44 (1988), 155-157. | MR
[4] Robertson A., Robertson W.: Topological vector spaces. Cambridge Univ. Press, 1973. | MR | Zbl
[5] Schaefer H.: Topological vector spaces. Springer-Verlag, New York-Heidelberg-Berlin, 1971. | MR | Zbl