Smoothness for systems of degenerate variational inequalities with natural growth
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 33-41
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We extend a regularity theorem of Hildebrandt and Widman [3] to certain degenerate systems of variational inequalities and prove Hölder-continuity of solutions which are in some sense stationary.
We extend a regularity theorem of Hildebrandt and Widman [3] to certain degenerate systems of variational inequalities and prove Hölder-continuity of solutions which are in some sense stationary.
@article{CMUC_1992_33_1_a3,
author = {Fuchs, Martin},
title = {Smoothness for systems of degenerate variational inequalities with natural growth},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {33--41},
year = {1992},
volume = {33},
number = {1},
mrnumber = {1173743},
zbl = {0773.49005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a3/}
}
TY - JOUR AU - Fuchs, Martin TI - Smoothness for systems of degenerate variational inequalities with natural growth JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 33 EP - 41 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a3/ LA - en ID - CMUC_1992_33_1_a3 ER -
Fuchs, Martin. Smoothness for systems of degenerate variational inequalities with natural growth. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a3/
[1] Fuchs M., Fusco N.: Partial regularity results for vector valued functions which minimize certain functionals having nonquadratic growth under smooth side conditions. J. Reine Angew. Math. 399 (1988), 67-78. | MR
[2] Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Studies 105, Princeton U.P. 1983. | MR | Zbl
[3] Hildebrandt S., Widman K.-O.: Variational inequalities for vectorvalued functions. J. Reine Angew. Math. 309 (1979), 181-220. | MR | Zbl
[4] Price P.: A monotonicity formula for Yang-Mills fields. Manus. Math. 43 (1983), 131-166. | MR | Zbl
[5] Uhlenbeck K.: Regularity for a class of nonlinear elliptic systems. Acta Math. 138 (1977), 219-240. | MR | Zbl