Natural sinks on $Y_\beta$
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 173-179
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let ${(e_\beta : {\bold Q} \rightarrow Y_\beta)}_{\beta \in \text{\bf Ord}}$ be the large source of epimorphisms in the category $\text{\bf Ury}$ of Urysohn spaces constructed in [2]. A sink ${(g_\beta : Y_\beta \rightarrow X)}_{\beta \in \text{\bf Ord}}$ is called natural, if $g_\beta \circ e_\beta = g_{\beta'} \circ e_{\beta'}$ for all $\beta,\beta' \in \text{\bf Ord}$. In this paper natural sinks are characterized. As a result it is shown that $\text{\bf Ury}$ permits no $({Epi},{\Cal M})$-factorization structure for arbitrary (large) sources.
Let ${(e_\beta : {\bold Q} \rightarrow Y_\beta)}_{\beta \in \text{\bf Ord}}$ be the large source of epimorphisms in the category $\text{\bf Ury}$ of Urysohn spaces constructed in [2]. A sink ${(g_\beta : Y_\beta \rightarrow X)}_{\beta \in \text{\bf Ord}}$ is called natural, if $g_\beta \circ e_\beta = g_{\beta'} \circ e_{\beta'}$ for all $\beta,\beta' \in \text{\bf Ord}$. In this paper natural sinks are characterized. As a result it is shown that $\text{\bf Ury}$ permits no $({Epi},{\Cal M})$-factorization structure for arbitrary (large) sources.
Classification :
18A20, 18A30, 18B30, 54B30, 54C10, 54D10, 54D35, 54G20
Keywords: epimorphism; Urysohn space; cointersection; factorization; natural sink; periodic; cowellpowered; ordinal
Keywords: epimorphism; Urysohn space; cointersection; factorization; natural sink; periodic; cowellpowered; ordinal
@article{CMUC_1992_33_1_a19,
author = {Schr\"oder, J.},
title = {Natural sinks on $Y_\beta$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {173--179},
year = {1992},
volume = {33},
number = {1},
mrnumber = {1173759},
zbl = {0761.18004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a19/}
}
Schröder, J. Natural sinks on $Y_\beta$. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 173-179. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a19/