Hereditarity of closure operators and injectivity
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 149-157 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A notion of hereditarity of a closure operator with respect to a class of monomorphisms is introduced. Let $C$ be a regular closure operator induced by a subcategory $\Cal A$. It is shown that, if every object of $\Cal A$ is a subobject of an $\Cal A$-object which is injective with respect to a given class of monomorphisms, then the closure operator $C$ is hereditary with respect to that class of monomorphisms.
A notion of hereditarity of a closure operator with respect to a class of monomorphisms is introduced. Let $C$ be a regular closure operator induced by a subcategory $\Cal A$. It is shown that, if every object of $\Cal A$ is a subobject of an $\Cal A$-object which is injective with respect to a given class of monomorphisms, then the closure operator $C$ is hereditary with respect to that class of monomorphisms.
Classification : 18A20, 18A32, 18G05
Keywords: closure operator; hereditary closure operator; injective object; factorization pair
@article{CMUC_1992_33_1_a16,
     author = {Castellini, Gabriele and Giuli, Eraldo},
     title = {Hereditarity of closure operators and injectivity},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {149--157},
     year = {1992},
     volume = {33},
     number = {1},
     mrnumber = {1173756},
     zbl = {0758.18002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a16/}
}
TY  - JOUR
AU  - Castellini, Gabriele
AU  - Giuli, Eraldo
TI  - Hereditarity of closure operators and injectivity
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 149
EP  - 157
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a16/
LA  - en
ID  - CMUC_1992_33_1_a16
ER  - 
%0 Journal Article
%A Castellini, Gabriele
%A Giuli, Eraldo
%T Hereditarity of closure operators and injectivity
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 149-157
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a16/
%G en
%F CMUC_1992_33_1_a16
Castellini, Gabriele; Giuli, Eraldo. Hereditarity of closure operators and injectivity. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 149-157. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a16/

[C] Castellini G.: Closure operators, monomorphisms and epimorphisms in categories of groups. Cahiers Topologie Geom. Differentielle Categoriques 27 (2) (1986), 151-167. | MR | Zbl

[CS] Castellini G., Strecker G.E.: Global closure operators vs. subcategories. Quaestiones Mathematicae 13 (1990), 417-424. | MR | Zbl

[DG$_1$] Dikranjan D., Giuli E.: Closure operators induced by topological epireflections. Coll. Math. Soc. J. Bolyai 41 (1983), 233-246. | MR

[DG$_2$] Dikranjan D., Giuli E.: Closure operators I. Topology Appl 27 (1987), 129-143. | MR | Zbl

[DG$_3$] Dikranjan D., Giuli E.: Factorizations, injectivity and compactness in categories of modules. Comm. Algebra 19 (1) (1991), 45-83. | MR | Zbl

[DG$_4$] Dikranjan D., Giuli E.: $C$-perfect morphisms and $C$-compactness. preprint.

[DGT] Dikranjan D., Giuli E., Tholen W.: Closure operators II. Proceedings of the Conference in Categorical Topology (Prague, 1988) World Scientific (1989), 297-335. | MR

[G] Giuli E.: Bases of topological epireflections. Topology Appl. 11 (1980), 265-273. | MR

[HS] Herrlich H., Strecker G.E.: Category Theory. 2nd ed., Helderman Verlag, Berlin, 1979. | MR | Zbl

[HSS] Herrlich H., Salicrup G., Strecker G.E.: Factorizations, denseness, separation, and relatively compact objects. Topology Appl. 27 (1987), 157-169. | MR | Zbl

[K] Koslowski J.: Closure operators with prescribed properties. Category Theory and its Applications (Louvain-la-Neuve, 1987) Springer L.N.M. 1248 (1988), 208-220. | MR | Zbl

[L] Lambek J.: Torsion theories, additive semantics and rings of quotients. Springer L.N.M. 177, 1971. | MR | Zbl

[S] Salbany S.: Reflective subcategories and closure operators. Proceedings of the Conference in Categorical Topology (Mannheim, 1975), Springer L.N.M. 540 (1976), 548-565. | MR | Zbl

[Sk] Skula L.: On a reflective subcategory of the category of all topological spaces. Trans. Amer. Mat. Soc. 142 (1969), 37-41. | MR | Zbl