A note on the Runge-Kutta method for stochastic differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 121-124
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the paper the convergence of a mixed Runge--Kutta method of the first and second orders to a strong solution of the Ito stochastic differential equation is studied under a monotonicity condition.
In the paper the convergence of a mixed Runge--Kutta method of the first and second orders to a strong solution of the Ito stochastic differential equation is studied under a monotonicity condition.
Classification :
60H10, 65L05
Keywords: stochastic differential equation; Runge--Kutta method; monotonicity and Lipschitz condition
Keywords: stochastic differential equation; Runge--Kutta method; monotonicity and Lipschitz condition
@article{CMUC_1992_33_1_a13,
author = {T\"or\"ok, Csaba},
title = {A note on the {Runge-Kutta} method for stochastic differential equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {121--124},
year = {1992},
volume = {33},
number = {1},
mrnumber = {1173753},
zbl = {0753.60052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a13/}
}
Török, Csaba. A note on the Runge-Kutta method for stochastic differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 121-124. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a13/
[1] Rümelin W.: Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19 (1982), 604-613. | MR
[2] Aljushina L.A.: Lomanyje Eulera dlja uravnenij Ito s monotonnymi koefficientami. Teor. Veroyatnost. i Primenen. 33 (1987), 367-373.