QTAG torsionfree modules
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 1-20 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The structure theory of abelian $p$-groups does not depend on the properties of the ring of integers, in general. The substantial portion of this theory is based on the fact that a finitely generated $p$-group is a direct sum of cyclics. Given a hereditary torsion theory on the category $R$-{\bf Mod} of unitary left $R$-modules we can investigate torsionfree modules having the corresponding property for all torsionfree factor-modules (and a natural requirement concerning extensions of some homomorphisms). This paper continues in our previous investigations of the structural properties of such modules.
The structure theory of abelian $p$-groups does not depend on the properties of the ring of integers, in general. The substantial portion of this theory is based on the fact that a finitely generated $p$-group is a direct sum of cyclics. Given a hereditary torsion theory on the category $R$-{\bf Mod} of unitary left $R$-modules we can investigate torsionfree modules having the corresponding property for all torsionfree factor-modules (and a natural requirement concerning extensions of some homomorphisms). This paper continues in our previous investigations of the structural properties of such modules.
Classification : 16D70, 16D80, 16S90
Keywords: torsion theory; torsionfree module; $\sigma$-QTAG-module; kernel of purity; center of purity
@article{CMUC_1992_33_1_a0,
     author = {Bican, Ladislav and Torrecillas, Blas},
     title = {QTAG torsionfree modules},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--20},
     year = {1992},
     volume = {33},
     number = {1},
     mrnumber = {1173740},
     zbl = {0765.16009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a0/}
}
TY  - JOUR
AU  - Bican, Ladislav
AU  - Torrecillas, Blas
TI  - QTAG torsionfree modules
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 1
EP  - 20
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a0/
LA  - en
ID  - CMUC_1992_33_1_a0
ER  - 
%0 Journal Article
%A Bican, Ladislav
%A Torrecillas, Blas
%T QTAG torsionfree modules
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 1-20
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a0/
%G en
%F CMUC_1992_33_1_a0
Bican, Ladislav; Torrecillas, Blas. QTAG torsionfree modules. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a0/

[AN] Albu T., Nastasescu C.: Relative finiteness in module theory. Pure and Appl. Math. 84, Marcel Dekker, New York, 1984. | MR | Zbl

[B$_{1}$] Bican L.: Kulikov's criterion for modules. J. Reine Angew. Math. 288 (1976), 154-159. | MR | Zbl

[B$_{2}$] Bican L.: The structure of primary modules. Acta Math. Universitatis Carolinae 17 (1976), 3-12. | MR | Zbl

[BN] Bican L., Kepka T., Němec P.: Rings, Modules and Preradicals. Marcel Dekker, New York, 1982. | MR

[BT$_{1}$] Bican L., Torrecillas B.: A general Kulikov's theorem. Comm. in Algebra 19 (1990), 2453-2486. | MR

[BT$_{2}$] Bican L., Torrecillas B.: A relative Ulm's theorem. to appear in Rivista Mat. Pura Appl. | Zbl

[G] Golan J.S.: Torsion Theories. Pitman Monographs and Surveys in Pure and Appl. Math., Longman Scientific Publishing, London, 1986. | MR | Zbl

[MS] Mehran H., Singh S.: On $\sigma $-pure submodules of QTAG-modules. Arch. Math. 46 (1986), 501-510. | MR | Zbl

[S$_{1}$] Singh S.: Modules over H.N.P. rings. Can. J. Mat. XXVII (1975), 867-883. | MR

[S$_{2}$] Singh S.: Some decompositions theorems in abelian groups and their generalizations. In: Ring Theory: Proc. of Ohio University Conf., Lecture Notes in Pure and Applied Math., Marcel Dekker 25 (1986), 183-189. | MR

[S$_{3}$] Singh S.: Abelian groups like modules. Acta Math. Hungarica 50 (1987), 85-97. | MR | Zbl

[S] Stenström B.: Rings of Quotients. Springer, Berlin, 1975. | MR

[T] Teply M.L.: Modules semicocritical with respect to a torsion theory and their applications. Israel J. Math. 54 (1986), 181-200. | MR | Zbl

[T$_{1}$] Torrecillas B.: On Kulikov's theorem. Comm. in Algebra 14 (1986), 1091-1110. | MR | Zbl

[T$_{2}$] Torrecillas B.: Height relative to a torsion theory. Ring theory (Antwerp 1985), Lecture Notes in Math. 1197, Springer, Berlin, 1986. | MR | Zbl

[T$_{3}$] Torrecillas B.: Neat submodules by relative height. Comm. in Algebra 17 (1989), 2309-2324. | MR | Zbl