Some results on the product of distributions and the change of variable
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 677-685 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $F$ and $G$ be distributions in $\Cal D'$ and let $f$ be an infinitely differentiable function with $f'(x)>0$, (or $0$). It is proved that if the neutrix product $F\circ G$ exists and equals $H$, then the neutrix product $F(f)\circ G(f)$ exists and equals $H(f)$.
Let $F$ and $G$ be distributions in $\Cal D'$ and let $f$ be an infinitely differentiable function with $f'(x)>0$, (or $0$). It is proved that if the neutrix product $F\circ G$ exists and equals $H$, then the neutrix product $F(f)\circ G(f)$ exists and equals $H(f)$.
Classification : 46F10
Keywords: distribution; neutrix product; change of variable
@article{CMUC_1991_32_4_a9,
     author = {\"Oz\c{c}ag, Emin and Fisher, Brian},
     title = {Some results on the product of distributions and the change of variable},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {677--685},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159814},
     zbl = {0761.46024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a9/}
}
TY  - JOUR
AU  - Özçag, Emin
AU  - Fisher, Brian
TI  - Some results on the product of distributions and the change of variable
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 677
EP  - 685
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a9/
LA  - en
ID  - CMUC_1991_32_4_a9
ER  - 
%0 Journal Article
%A Özçag, Emin
%A Fisher, Brian
%T Some results on the product of distributions and the change of variable
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 677-685
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a9/
%G en
%F CMUC_1991_32_4_a9
Özçag, Emin; Fisher, Brian. Some results on the product of distributions and the change of variable. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 677-685. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a9/

[1] van der Corput J.G.: Introduction to the neutrix calculus. J. Analyse Math. 7 (1959-60), 291-398. | MR | Zbl

[2] Fisher B.: A non-commutative neutrix product of distributions. Math. Nachr. 108 (1982), 117-127. | Zbl

[3] Fisher B.: On defining the distribution $\delta ^{(r)}(f(x))$ for summable $f$. Publ. Math. Debrecen 32 (1985), 233-241. | MR

[4] Fisher B.: On the product of distributions and the change of variable. Publ. Math. Debrecen 35 (1988), 37-42. | MR | Zbl

[5] Fisher B., Özcağ E.: A result on distributions and the change of variable. submitted for publication.

[6] Gel'fand I.M., Shilov G.E.: Generalized Functions. vol. I., Academic Press, 1964. | MR | Zbl