Inductive limit topologies on Orlicz spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 667-675 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L^\varphi $ be an Orlicz space defined by a convex Orlicz function $\varphi $ and let $E^\varphi $ be the space of finite elements in $L^\varphi $ (= the ideal of all elements of order continuous norm). We show that the usual norm topology $\Cal T_\varphi$ on $L^\varphi $ restricted to $E^\varphi $ can be obtained as an inductive limit topology with respect to some family of other Orlicz spaces. As an application we obtain a characterization of continuity of linear operators defined on $E^\varphi $.
Let $L^\varphi $ be an Orlicz space defined by a convex Orlicz function $\varphi $ and let $E^\varphi $ be the space of finite elements in $L^\varphi $ (= the ideal of all elements of order continuous norm). We show that the usual norm topology $\Cal T_\varphi$ on $L^\varphi $ restricted to $E^\varphi $ can be obtained as an inductive limit topology with respect to some family of other Orlicz spaces. As an application we obtain a characterization of continuity of linear operators defined on $E^\varphi $.
Classification : 46A13, 46E30, 54A10
Keywords: Orlicz spaces; inductive limit topologies; convex functions
@article{CMUC_1991_32_4_a8,
     author = {Nowak, Marian},
     title = {Inductive limit topologies on {Orlicz} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {667--675},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159813},
     zbl = {0756.46014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a8/}
}
TY  - JOUR
AU  - Nowak, Marian
TI  - Inductive limit topologies on Orlicz spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 667
EP  - 675
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a8/
LA  - en
ID  - CMUC_1991_32_4_a8
ER  - 
%0 Journal Article
%A Nowak, Marian
%T Inductive limit topologies on Orlicz spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 667-675
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a8/
%G en
%F CMUC_1991_32_4_a8
Nowak, Marian. Inductive limit topologies on Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 667-675. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a8/

[1] Davis H.W., Murray F.J., Weber J.K.: Families of $L_p$-spaces with inductive and projective topologies. Pacific J. Math. 34 (1970), 619-638. | MR

[2] Davis H.W., Murray F.J., Weber J.K.: Inductive and projective limits of $L_p$-spaces. Portugal. Math. 38 (1972), 21-29. | MR | Zbl

[3] Krasnoselskii M.A., Rutickii Ya.B.: Convex Functions and Orlicz Spaces. Groningen, 1961.

[4] Leśniewicz R.: On two equalities for Orlicz spaces. Bull. Acad. Pol. Sci. 27 (1979), 557-560. | MR

[5] Luxemburg W.A.: Banach Functions Spaces. Delft, 1955. | MR

[6] Musielak J., Orlicz W.: Some remarks on modular spaces. Bull. Acad. Pol. Sci. 7 (1959), 661-668. | MR | Zbl

[7] Nowak M.: Some equalities among Orlicz spaces II. Bull. Acad. Pol. Sci. 34 (1986), 675-687. | MR | Zbl

[8] Nowak M.: Unions and intersections of families of $L^p$-spaces. Math. Nachr. 136 (1988), 241-251. | MR

[9] Nowak M.: Some equalities among Orlicz spaces I. Comment. Math. 29 (1990), 255-275. | MR | Zbl

[10] Robertson A.P., Robertson W.J.: Topological Vector Spaces. Cambridge, 1973. | MR | Zbl

[11] Turpin Ph.: Convexités dans les espaces vectoriels topologiques généraux. Dissertationes Math. 131 (1976). | MR | Zbl

[12] Welland R.: Inclusions relations among Orlicz spaces. Proc. Amer. Math. Soc. 17 (1966), 135-138. | MR