$L^p$-approximation of Jacobians
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from $\operatorname{Cart}^p(\Omega ,\bold R^m)$ is approximated by $\Cal C ^1$ functions strongly in $\Cal A^q(\Omega ,\bold R^m)$ whenever $q
The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from $\operatorname{Cart}^p(\Omega ,\bold R^m)$ is approximated by $\Cal C ^1$ functions strongly in $\Cal A^q(\Omega ,\bold R^m)$ whenever $q$. An example is shown of a function which is in $\operatorname{cart}^p(\Omega ,\bold R^2)$ but not in $\operatorname{cart}^p(\Omega ,\bold R^2)$.
Classification : 28A75, 46E40, 49J45, 73C50, 74B20
Keywords: Sobolev spaces; minors of the Jacobi matrix; weak and strong convergence; cartesian currents
@article{CMUC_1991_32_4_a7,
     author = {Mal\'y, Jan},
     title = {$L^p$-approximation of {Jacobians}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {659--666},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159812},
     zbl = {0753.46024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a7/}
}
TY  - JOUR
AU  - Malý, Jan
TI  - $L^p$-approximation of Jacobians
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 659
EP  - 666
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a7/
LA  - en
ID  - CMUC_1991_32_4_a7
ER  - 
%0 Journal Article
%A Malý, Jan
%T $L^p$-approximation of Jacobians
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 659-666
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a7/
%G en
%F CMUC_1991_32_4_a7
Malý, Jan. $L^p$-approximation of Jacobians. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a7/

[1] Giaquinta M., Modica G., Souček J.: Cartesian currents, weak dipheomorphisms and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 106 (1989), 97-159. {Erratum and addendum}. Arch. Rat. Mech. Anal. 109 (1990), 385-592. | MR

[2] Giaquinta M., Modica G., Souček J.: Cartesian currents and variational problems for mappings into spheres. Annali S.N.S. Pisa 16 (1989), 393-485. | MR

[3] Giaquinta M., Modica G., Souček J.: The Dirichlet energy of mappings with values into the sphere. Manuscripta Math. 65 (1989), 489-507. | MR

[4] Giaquinta M., Modica G., Souček J.: The Dirichlet integral for mappings between manifolds: Cartesian currents and homology. Università di Firenze, preprint, 1991. | MR

[5] V. Šverák: Regularity properties of deformations with finite energy. Arch. Rat. Mech. Anal. 100 (1988), 105-127. | MR

[6] W.P. Ziemer: Weakly Differentiable Functions. Sobolev Spaces and Function of Bounded Variation. Graduate Text in Mathematics 120, Springer-Verlag, 1989. | MR