Keywords: Sobolev spaces; minors of the Jacobi matrix; weak and strong convergence; cartesian currents
@article{CMUC_1991_32_4_a7,
author = {Mal\'y, Jan},
title = {$L^p$-approximation of {Jacobians}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {659--666},
year = {1991},
volume = {32},
number = {4},
mrnumber = {1159812},
zbl = {0753.46024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a7/}
}
Malý, Jan. $L^p$-approximation of Jacobians. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 659-666. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a7/
[1] Giaquinta M., Modica G., Souček J.: Cartesian currents, weak dipheomorphisms and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 106 (1989), 97-159. {Erratum and addendum}. Arch. Rat. Mech. Anal. 109 (1990), 385-592. | MR
[2] Giaquinta M., Modica G., Souček J.: Cartesian currents and variational problems for mappings into spheres. Annali S.N.S. Pisa 16 (1989), 393-485. | MR
[3] Giaquinta M., Modica G., Souček J.: The Dirichlet energy of mappings with values into the sphere. Manuscripta Math. 65 (1989), 489-507. | MR
[4] Giaquinta M., Modica G., Souček J.: The Dirichlet integral for mappings between manifolds: Cartesian currents and homology. Università di Firenze, preprint, 1991. | MR
[5] V. Šverák: Regularity properties of deformations with finite energy. Arch. Rat. Mech. Anal. 100 (1988), 105-127. | MR
[6] W.P. Ziemer: Weakly Differentiable Functions. Sobolev Spaces and Function of Bounded Variation. Graduate Text in Mathematics 120, Springer-Verlag, 1989. | MR