Keywords: semi-Fredholm operator; strictly singular operator; perturbation
@article{CMUC_1991_32_4_a6,
author = {Gonzalez, Manuel and Martinon, Antonio},
title = {Operational quantities derived from the norm and generalized {Fredholm} theory},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {645--657},
year = {1991},
volume = {32},
number = {4},
mrnumber = {1159811},
zbl = {0762.47005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a6/}
}
TY - JOUR AU - Gonzalez, Manuel AU - Martinon, Antonio TI - Operational quantities derived from the norm and generalized Fredholm theory JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 645 EP - 657 VL - 32 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a6/ LA - en ID - CMUC_1991_32_4_a6 ER -
%0 Journal Article %A Gonzalez, Manuel %A Martinon, Antonio %T Operational quantities derived from the norm and generalized Fredholm theory %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 645-657 %V 32 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a6/ %G en %F CMUC_1991_32_4_a6
Gonzalez, Manuel; Martinon, Antonio. Operational quantities derived from the norm and generalized Fredholm theory. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 645-657. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a6/
[1] Alvarez J.A., Alvarez T., Gonzalez M.: The gap between subspaces and perturbation of non semi-Fredholm operators. Bull. Austral. Math. Soc., to appear. | MR | Zbl
[2] Alvarez T., Gonzalez M.: Some examples of tauberian operators. Proc. Amer. Math. Soc. 111 (1991), 1023-1027. | MR
[3] Alvarez T., Gonzalez M., Onieva V.M.: Totally incomparable Banach spaces and three-space Banach space ideals. Math. Nachrichten 131 (1987), 83-88. | MR | Zbl
[4] Alvarez T., Gonzalez M., Onieva V.M.: Characterizing two classes of operator ideals. Contribuciones Matematicas Homenaje Prof. Plans, Univ. Zaragoza (1990), 7-21.
[5] Fajnshtejn A.S.: On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian). Spektr. Teor. Oper. 6 (1985), 182-185, Zbl. 634#47010.
[6] Goldberg S.: Unbounded Linear Operators. McGraw Hill, 1966. | MR | Zbl
[7] Gonzalez M., Martinon A.: Operational quantities and operator ideals. XIV Jornadas Hispano Lusas de Mat. (Univ. La Laguna, 1989), Univ. La Laguna, 1990, 119-124. | MR
[8] Gonzalez M., Martinon A.: A generalization of semi-Fredholm operators. preprint. | MR
[9] Gonzalez M., Onieva V.M.: On incomparability of Banach spaces. Math. Z. 192 (1986), 581-585. | MR | Zbl
[10] Gonzalez M., Onieva V.M.: Characterizations of tauberian operators. Proc. Amer. Math. Soc. 108 (1990), 399-405. | MR | Zbl
[11] Kadets M.I.: Note on the gap between subspaces. Funct. Anal. Appl. 9 (1975), 156-157. | Zbl
[12] Kalton N.J., Wilansky A.: Tauberian operators in Banach spaces. Proc. Amer. Math. Soc. 57 (1976), 233-240. | MR
[13] Kato T.: Perturbation theory for linear operators. Springer-Verlag, 1980. | Zbl
[14] Martinon A.: Cantidades operacionales en teoría de Fredholm (Thesis). Univ. La Laguna, 1989. | MR
[15] Pietsch A.: Operator ideals. North-Holland, 1980. | MR | Zbl
[16] Rosenthal H.P.: On totally incomparable Banach spaces. J. Funct. Anal. 4 (1969), 167-175. | MR | Zbl
[17] Schechter M.: Quantities related to strictly singular operators. Indiana Univ. Math. J. 21 (1972), 1061-1071. | MR | Zbl
[18] Sedaev A.A.: The structure of certain linear operators (in Russian). Mat. Issled. 5 (1970), 166-175, MR 43#2540, Zbl. 247#47005. | MR
[19] Stephani I.: Operator ideals generalizing the ideal of strictly singular operators. Math. Nachrichten 94 (1980), 29-41. | MR | Zbl
[20] Weis L.: Über striktly singuläre und striktly cosinguläre Operatoren in Banachräumen (Dissertation). Univ. Bonn, 1974.
[21] Zemánek J.: Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour. Studia Math. 80 (1984), 219-234. | MR