Fixed points of asymptotically regular mappings in spaces with uniformly normal structure
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 639-643 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is proved that: for every Banach space $X$ which has uniformly normal structure there exists a $k>1$ with the property: if $A$ is a nonempty bounded closed convex subset of $X$ and $T:A\rightarrow A$ is an asymptotically regular mapping such that $$ \liminf _{n\rightarrow \infty } |\kern -0.8pt|\kern -0.8pt|T^n|\kern -0.8pt|\kern -0.8pt| k, $$ where $|\kern -0.8pt|\kern -0.8pt|T|\kern -0.8pt|\kern -0.8pt|$ is the Lipschitz constant (norm) of $T$, then $T$ has a fixed point in $A$.
It is proved that: for every Banach space $X$ which has uniformly normal structure there exists a $k>1$ with the property: if $A$ is a nonempty bounded closed convex subset of $X$ and $T:A\rightarrow A$ is an asymptotically regular mapping such that $$ \liminf _{n\rightarrow \infty } |\kern -0.8pt|\kern -0.8pt|T^n|\kern -0.8pt|\kern -0.8pt| k, $$ where $|\kern -0.8pt|\kern -0.8pt|T|\kern -0.8pt|\kern -0.8pt|$ is the Lipschitz constant (norm) of $T$, then $T$ has a fixed point in $A$.
Classification : 46B20, 47H10
Keywords: asymptotically regular mappings; uniformly normal structure; fixed points
@article{CMUC_1991_32_4_a5,
     author = {G\'ornicki, Jaros{\l}aw},
     title = {Fixed points of asymptotically regular mappings in spaces with uniformly normal structure},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {639--643},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159810},
     zbl = {0768.47027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a5/}
}
TY  - JOUR
AU  - Górnicki, Jarosław
TI  - Fixed points of asymptotically regular mappings in spaces with uniformly normal structure
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 639
EP  - 643
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a5/
LA  - en
ID  - CMUC_1991_32_4_a5
ER  - 
%0 Journal Article
%A Górnicki, Jarosław
%T Fixed points of asymptotically regular mappings in spaces with uniformly normal structure
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 639-643
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a5/
%G en
%F CMUC_1991_32_4_a5
Górnicki, Jarosław. Fixed points of asymptotically regular mappings in spaces with uniformly normal structure. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 639-643. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a5/

[1] Browder F.E., Petryshyn V.W.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. AMS 72 (1966), 571-576. | MR | Zbl

[2] Bynum W.L.: Normal structure coefficients for Banach spaces. Pacific J. Math. 86 (1980), 427-436. | MR | Zbl

[3] Casini E., Maluta E.: Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal., TMA 9 (1985), 103-108. | MR | Zbl

[4] Daneš J.: On densifying and related mappings and their applications in nonlinear functional analysis. in: Theory of Nonlinear Operators (Proc. Summer School, October 1972, GDR), Akademie-Verlag, Berlin, 1974, 15-56. | MR

[5] Downing D.J., Turett B.: Some properties of the characteristic convexity relating to fixed point theory. Pacific J. Math. 104 (1983), 343-350. | MR

[6] Edelstein M., O'Brien C.R.: Nonexpansive mappings, asymptotic regularity and successive approximations. J. London Math. Soc. (2) 17 (1978), 547-554. | MR | Zbl

[7] Gillespie A.A., Williams B.B.: Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure. Appl. Anal. 9 (1979), 121-124. | MR

[8] Górnicki J.: A fixed point theorem for asymptotically regular mappings. to appear. | MR

[9] Krüppel M.: Ein Fixpunktsatz für asymptotisch reguläre Operatoren in gleichmäßig konvexen Banach-Räumen. Wiss. Z. Pädagog. Hochsch. ``Liselotte Herrmann'' Güstrow, Math.-naturwiss. Fak. 25 (1987), 241-246. | MR

[10] Lin P.K.: A uniformly asymptotically regular mapping without fixed points. Canad. Math. Bull. 30 (1987), 481-483. | MR | Zbl

[11] Yu X.T.: On uniformly normal structure. Kexue Tongbao 33 (1988), 700-702. | Zbl

[12] Yu X.T.: A geometrically aberrant Banach space with uniformly normal structure. Bull. Austral. Math. Soc. 38 (1988), 99-103. | MR | Zbl