A Parseval equation and a generalized finite Hankel transformation
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 627-638 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we study the finite Hankel transformation on spaces of ge\-ne\-ra\-lized functions by developing a new procedure. We consider two Hankel type integral transformations $h_\mu $ and $h_\mu ^{\ast }$ connected by the Parseval equation $$ \sum_{n=0}^{\infty }(h_\mu f)(n)(h_\mu ^{\ast } \varphi )(n)= \int_{0}^{1}f(x)\varphi (x)\, dx. $$ A space $S_\mu $ of functions and a space $L_\mu $ of complex sequences are introduced. $h_\mu ^{\ast }$ is an isomorphism from $S_\mu $ onto $L_\mu $ when $\mu \geq -\frac{1}{2}$. We propose to define the generalized finite Hankel transform $h'_\mu f$ of $f\in S'_\mu $ by $$ \langle (h'_\mu f), ((h_\mu ^{\ast } \varphi )(n))_{n=0}^{\infty }\rangle =\langle f,\varphi \rangle, \quad \text{for } \varphi \in S_\mu . $$
In this paper, we study the finite Hankel transformation on spaces of ge\-ne\-ra\-lized functions by developing a new procedure. We consider two Hankel type integral transformations $h_\mu $ and $h_\mu ^{\ast }$ connected by the Parseval equation $$ \sum_{n=0}^{\infty }(h_\mu f)(n)(h_\mu ^{\ast } \varphi )(n)= \int_{0}^{1}f(x)\varphi (x)\, dx. $$ A space $S_\mu $ of functions and a space $L_\mu $ of complex sequences are introduced. $h_\mu ^{\ast }$ is an isomorphism from $S_\mu $ onto $L_\mu $ when $\mu \geq -\frac{1}{2}$. We propose to define the generalized finite Hankel transform $h'_\mu f$ of $f\in S'_\mu $ by $$ \langle (h'_\mu f), ((h_\mu ^{\ast } \varphi )(n))_{n=0}^{\infty }\rangle =\langle f,\varphi \rangle, \quad \text{for } \varphi \in S_\mu . $$
Classification : 44A15, 46F12
Keywords: finite Hankel transformation; distribution; Parseval equation
@article{CMUC_1991_32_4_a4,
     author = {Betancor, Jorge J. and Flores, Manuel T.},
     title = {A {Parseval} equation and a generalized finite {Hankel} transformation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {627--638},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159809},
     zbl = {0763.46028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a4/}
}
TY  - JOUR
AU  - Betancor, Jorge J.
AU  - Flores, Manuel T.
TI  - A Parseval equation and a generalized finite Hankel transformation
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 627
EP  - 638
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a4/
LA  - en
ID  - CMUC_1991_32_4_a4
ER  - 
%0 Journal Article
%A Betancor, Jorge J.
%A Flores, Manuel T.
%T A Parseval equation and a generalized finite Hankel transformation
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 627-638
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a4/
%G en
%F CMUC_1991_32_4_a4
Betancor, Jorge J.; Flores, Manuel T. A Parseval equation and a generalized finite Hankel transformation. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 627-638. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a4/

[1] Betancor J.J.: The Hankel-Schwartz transform for functions of compact support. Rend. Mat. Appl. 7 (3-4) (1987), 399-409. | MR

[2] Betancor J.J.: A mixed Parseval's equation and a generalized Hankel transformation of distributions. Can. J. Math. XLI (2) (1989), 274-284. | MR | Zbl

[3] Churchill R.V.: Fourier Series and Boundary Value Problems. McGraw Hill, New York, 1963. | MR | Zbl

[4] Cinelli G.: An extension of the finite Hankel transform and applications. Int. J. Engng. 3 (1965), 539-559. | MR | Zbl

[5] Dube L.S.: On finite Hankel transformation of generalized functions. Pacific J. Math. 62 (1976), 365-378. | MR | Zbl

[6] Gelfand I.M., Shilov G.E.: Generalized functions. Vol. III, Academic Press, New York, 1967. | MR

[7] Liu S.H.: Method of generalized finite Hankel transform. Z. Angew. Math. Mech. 51 (1971), 311-313. | MR

[8] Méndez J.M.: A mixed Parseval equation and the generalized Hankel transformation. Proc. Amer. Math. Soc. 102 (1988), 619-624. | MR

[9] Méndez J.M.: The finite Hankel-Schwartz transform. J. Korean Math. Soc. 26 (1) (1989), 647-655. | MR

[10] Méndez J.M., Negrín J.R.: Fourier Bessel series expansions of generalized functions and finite Hankel transforms of distributions. Rev. Roum. de Math. Pures et Appl. XXXIV (7) (1989), 647-655. | MR

[11] Pandey J.N., Pathak R.S.: Eigenfunction expansion of generalized functions. Nagoya Math. J. 72 (1978), 1-25. | MR | Zbl

[12] Pathak R.S.: Orthogonal series representations for generalized functions. J. Math. Anal. Appl. 130 (1988), 316-333. | MR | Zbl

[13] Pathak R.S., Singh O.P.: Finite Hankel transforms of distributions. Pacific J. Math. 99 (1982), 439-458. | MR | Zbl

[14] Sneddon I.N.: On finite Hankel transforms. Phil. Mag. (7) 17 (1946), 16-25. | MR

[15] Sneddon I.N.: The Use of Integral Transforms. Tata McGraw Hill, New Delhi, 1979. | Zbl

[16] Titchmarsh E.C.: A class of expansions in series of Bessel functions. Proc. London Math. Soc. (2) 22 (1924), xiii-xvi.

[17] Watson G.N.: Theory of Bessel Functions. 2nd ed., Cambridge University Press, Cambridge, 1958. | Zbl

[18] Zemanian A.H.: Orthonormal series expansions of certain distributions and distributional transform calculus. J. Math. Anal. Appl. 14 (1966), 263-275. | MR | Zbl

[19] Zemanian A.H.: Generalized Integral Transformations. Interscience Publishers, New York, 1968. | MR | Zbl