A note on universal minimal dynamical systems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 781-783
Let $M(G)$ denote the phase space of the universal minimal dynamical system for a group $G$. Our aim is to show that $M(G)$ is homeomorphic to the absolute of $D^{2^\omega }$, whenever $G$ is a countable Abelian group.
Let $M(G)$ denote the phase space of the universal minimal dynamical system for a group $G$. Our aim is to show that $M(G)$ is homeomorphic to the absolute of $D^{2^\omega }$, whenever $G$ is a countable Abelian group.
Classification :
54H20
Keywords: dynamical system; universal minimal dynamical system; Abelian group; absolute
Keywords: dynamical system; universal minimal dynamical system; Abelian group; absolute
@article{CMUC_1991_32_4_a21,
author = {Turek, S{\l}awomir},
title = {A note on universal minimal dynamical systems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {781--783},
year = {1991},
volume = {32},
number = {4},
mrnumber = {1159826},
zbl = {0765.54035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a21/}
}
Turek, Sławomir. A note on universal minimal dynamical systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 781-783. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a21/
[1] Balcar B., Błaszczyk A.: On minimal dynamical systems on Boolean algebras. Comment. Math. Univ. Carolinae 31 (1990), 7-11. | MR
[2] Comfort W.W.: Topological Groups. Handbook of set-theoretic topology, North-Holland, 1984, 1143-1260. | MR | Zbl
[3] van Douwen E.K.: The maximal totally bounded group topology on $G$ and the biggest minimal $G$-space, for Abelian groups $G$. Topology and its Appl. 34 (1990), 69-91. | MR | Zbl
[4] Ellis R.: Lectures on Topological Dynamics. Benjamin, New York, 1969 (). | MR | Zbl
[5] Hewitt E., Ross K.A.: Abstract Harmonic Analysis I. Springer, Berlin, 1963.
[6] van der Woude J.: Topological Dynamix. Mathematisch Centrum, Amsterdam, 1982. | Zbl