On matrix points in Čech--Stone compactifications of discrete spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 775-780
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove the existence of $(2^\tau, \tau )$-matrix points among uniform and regular points of Čech--Stone compactification of uncountable discrete spaces and discuss some properties of these points.
We prove the existence of $(2^\tau, \tau )$-matrix points among uniform and regular points of Čech--Stone compactification of uncountable discrete spaces and discuss some properties of these points.
Classification :
54D35, 54D40
Keywords: Čech--Stone compactification of discrete spaces; weak $p$-points; independent matrix
Keywords: Čech--Stone compactification of discrete spaces; weak $p$-points; independent matrix
@article{CMUC_1991_32_4_a20,
author = {Gryzlov, A.},
title = {On matrix points in {\v{C}ech--Stone} compactifications of discrete spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {775--780},
year = {1991},
volume = {32},
number = {4},
mrnumber = {1159825},
zbl = {0768.54019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a20/}
}
Gryzlov, A. On matrix points in Čech--Stone compactifications of discrete spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 775-780. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a20/
[K] Kunen K.: Weak $p$-points in $\beta N\setminus N$. Coll. Math. Soc. Janos Bolyai, Topology, Budapest, vol. 23, 341-349.
[G$_1$] Gryzlov A.: Ob odnom klasse tochek prostranstva $N^{\ast }$. Leningradskaya mezhdunarodnaya konf., Leningrad, Nauka, 1982, p. 57.
[G$_2$] Gryzlov A.: K teorii prostranstva $\beta N$. Obshchaya topologiya, Mosk. Univ., Moskva, 1986, 20-33.
[EK] Engelking R., Karłowicz M.: Cartesian products and dyadic spaces. Fund. Math. 57 (1965), 287-304. | MR