On centralizers of semiprime rings
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 609-614
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\Cal K$ be a semiprime ring and $T:\Cal K\rightarrow \Cal K$ an additive mapping such that $T(x^2)=T(x)x$ holds for all $x\in \Cal K$. Then $T$ is a left centralizer of $\Cal K$. It is also proved that Jordan centralizers and centralizers of $\Cal K$ coincide.
Let $\Cal K$ be a semiprime ring and $T:\Cal K\rightarrow \Cal K$ an additive mapping such that $T(x^2)=T(x)x$ holds for all $x\in \Cal K$. Then $T$ is a left centralizer of $\Cal K$. It is also proved that Jordan centralizers and centralizers of $\Cal K$ coincide.
Classification :
16N60, 16U70, 16W10, 16W20, 16W25
Keywords: semiprime ring; left centralizer; centralizer; Jordan centralizer
Keywords: semiprime ring; left centralizer; centralizer; Jordan centralizer
@article{CMUC_1991_32_4_a2,
author = {Zalar, Borut},
title = {On centralizers of semiprime rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {609--614},
year = {1991},
volume = {32},
number = {4},
mrnumber = {1159807},
zbl = {0746.16011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a2/}
}
Zalar, Borut. On centralizers of semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 609-614. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a2/
[1] Brešar M., Vukman J.: On some additive mapping in rings with involution. Aequationes Math. 38 (1989), 178-185. | MR
[2] Brešar M., Zalar B.: On the structure of Jordan $\ast $-derivations. Colloquium Math., to appear. | MR
[3] Herstein I.N.: Topics in ring theory. University of Chicago Press, 1969. | MR | Zbl
[4] Herstein I.N.: Theory of rings. University of Chicago Press, 1961.
[5] Johnson B.E., Sinclair A.M.: Continuity of derivations and a problem of Kaplansky. Amer. J. Math. 90 (1968), 1067-1073. | MR | Zbl
[6] Šemrl P.: Quadratic functionals and Jordan $\ast $-derivations. Studia Math. 97 (1991), 157-165. | MR