On generalized homogeneity of locally connected plane continua
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 769-774 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The well-known result of S. Mazurkiewicz that the simple closed curve is the only nondegenerate locally connected plane homogeneous continuum is extended to generalized homogeneity with respect to some other classes of mappings. Several open problems in the area are posed.
The well-known result of S. Mazurkiewicz that the simple closed curve is the only nondegenerate locally connected plane homogeneous continuum is extended to generalized homogeneity with respect to some other classes of mappings. Several open problems in the area are posed.
Classification : 54C10, 54F15, 54F50
Keywords: confluent; continuum; dendrite; homogeneous; light; local homeomorphism; locally connected; monotone; open; plane; simple closed curve; universal plane curve
@article{CMUC_1991_32_4_a19,
     author = {Charatonik, Janusz J.},
     title = {On generalized homogeneity of locally connected plane continua},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {769--774},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159824},
     zbl = {0786.54035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a19/}
}
TY  - JOUR
AU  - Charatonik, Janusz J.
TI  - On generalized homogeneity of locally connected plane continua
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 769
EP  - 774
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a19/
LA  - en
ID  - CMUC_1991_32_4_a19
ER  - 
%0 Journal Article
%A Charatonik, Janusz J.
%T On generalized homogeneity of locally connected plane continua
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 769-774
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a19/
%G en
%F CMUC_1991_32_4_a19
Charatonik, Janusz J. On generalized homogeneity of locally connected plane continua. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 769-774. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a19/

[1] Anderson R.D.: A characterization of the universal curve and a proof of its homogeneity. Ann. of Math. (2) 67 (1958), 313-324. | MR | Zbl

[2] Anderson R.D.: One-dimensional continuous curves and a homogeneity theorem. Ann. of Math. (2) 68 (1958), 1-16. | MR | Zbl

[3] Bing R.H.: A simple closed curve is the only homogeneous bounded plane continuum that contains an arc. Canad. J. Math. 12 (1960), 209-230. | MR | Zbl

[4] Charatonik J.J.: On fans. Dissertationes Math. (Rozprawy Mat.) 54 (1967), 1-40. | MR | Zbl

[5] Charatonik J.J.: Some problems on generalized homogeneity of continua. Topology, Proc. International Topological Conference, Leningrad 1982; Lecture Notes in Math., vol. 1060, Springer Verlag, 1984, 1-6. | MR | Zbl

[6] Charatonik J.J.: Mappings of the Sierpiński curve onto itself. Proc. Amer. Math. Soc. 92 (1984), 125-132. | MR | Zbl

[7] Charatonik J.J.: Generalized homogeneity of curves and a question of H. Kato. Bull. Polish Acad. Sci. Math. 36 (1988), 409-411. | MR | Zbl

[8] Charatonik J.J.: Monotone mappings of universal dendrites. Topology Appl. 38 (1991), 163-167. | MR | Zbl

[9] Charatonik J.J., Omiljanowski K.: On light open mappings. Proceedings International Topological Conference, Baku (USSR), l989, 211-219. | MR | Zbl

[10] Kato H.: Generalized homogeneity of continua and a question of J.J. Charatonik. Houston J. Math. 13 (1987), 51-63. | MR | Zbl

[11] Kato H.: On problems of H. Cook. Topology Appl. 26 (1987), 219-228. | MR | Zbl

[12] Krasinkiewicz J.: On homeomorphisms of the Sierpiński curve. Comment. Math. Prace Mat. 12 (1969), 255-257. | MR | Zbl

[13] Mazurkiewicz S.: Sur les continus homogènes. Fund. Math. 5 (1924), 137-146.

[14] Prajs J.R.: On open homogeneity of closed balls in the Euclidean spaces. preprint.

[15] Prajs J.R.: Openly homogeneous continua in 2-manifolds. preprint. | Zbl

[16] Rogers J.T., Jr.: Homogeneous continua. Topology Proc. 8 (1983), 213-233. | MR | Zbl

[17] Rogers J.T., Jr.: Classifying homogeneous continua. Proc. of the Topology Symposium at Oxford University (June 1989), preprint. | MR | Zbl

[18] Wilson D.C.: Open mappings of the universal curve onto continuous curves. Trans. Amer. Math. Soc. 168 (1972), 497-515. | MR | Zbl