Making factorizations compositive
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 749-759 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.
The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.
Classification : 03E10, 18A20, 18A30, 18A32
Keywords: (locally) orthogonal $\Cal E$-factorization; (local) factorization class; colimit of a chain; cointersection; regular epimorphism; joint coequalizer; (familially) strong epimorphism; decomposition number
@article{CMUC_1991_32_4_a17,
     author = {B\"orger, Reinhard},
     title = {Making factorizations compositive},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {749--759},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159822},
     zbl = {0760.18001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a17/}
}
TY  - JOUR
AU  - Börger, Reinhard
TI  - Making factorizations compositive
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 749
EP  - 759
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a17/
LA  - en
ID  - CMUC_1991_32_4_a17
ER  - 
%0 Journal Article
%A Börger, Reinhard
%T Making factorizations compositive
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 749-759
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a17/
%G en
%F CMUC_1991_32_4_a17
Börger, Reinhard. Making factorizations compositive. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 749-759. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a17/

[1] BörgerR.: Kategorielle Beschreibungen von Zusammenhangsbegriffen. Doctoral Dissertation, Fernuniversität Hagen, 1981. | Zbl

[2] BörgerR., Tholen W.: Concordant-dissonant and monotone-light. Proceedings of the International Conference on Categorical Topology, Toledo (Ohio), 1983 Sigma Series in Pure Mathematics 5 (1984), 90-107. | MR | Zbl

[3] BörgerR., Tholen W.: Total categories and solid functors. Can. J. Math. 42 (1990), 213-229. | MR | Zbl

[4] BörgerR., Tholen W.: Strong, regular, and dense generators. Cahiers Topologie Géom. Différentielle Catégoriques, to appear. | Zbl

[5] Ehrbar H., Wyler O.: Images in categories as reflections. Cahiers Topologie Géom. Différentielle Catégoriques 28 (1987), 143-158. | MR | Zbl

[6] Freyd P., Kelly G.M.: Categories of continuous functors I. J. Pure Appl. Algebra 2 (1972), 169-191. | MR | Zbl

[7] Gabriel P., Ulmer F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathematics 221, Springer, Berlin, 1971. | MR | Zbl

[8] Herrlich H., Salicrup G., Vazquez R.: Dispersed factorization structures. Can. J. Math. 31 (1979), 1059-1071. | MR | Zbl

[9] Herrlich H., Salicrup G., Vazquez R.: Light factorization structures. Quaest. Math. 3 (1979), 181-213. | MR | Zbl

[10] Isbell J.R.: Epimorphisms and dominions. Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, Berlin (1966), 232-246. | MR | Zbl

[11] Isbell J.R.: Structure of categories. Bull. Amer. Math. Soc. 72 (1966), 619-655. | MR | Zbl

[12] Kelly G.M.: Monomorphisms, epimorphisms, and pullbacks. J. Austral. Math. Soc. A9 (1969), 124-142. | MR

[13] Kunen K.: Set theory. Studies in Logic and the Foundation of Mathematics 102, North-Holland, Amsterdam, 1980. | MR | Zbl

[14] Melton A., Strecker G.E.: On the structure of factorization structures. Lecture Notes in Mathematics 962, Springer, Berlin (1982), 197-208. | MR | Zbl

[15] MacDonald J., Stone A.: The tower and regular decomposition. Cahiers Topologie Géom. Différentielle Categoriques 23 (1982), 197-213. | MR | Zbl

[16] MacDonald J., Tholen W.: Decomposition of morphisms into infinetely many factors. Lecture Notes in Mathematics 962, Springer, Berlin (1982), 175-189. | MR

[17] Preuß G.: $\Cal E$-zusammenhängende Räume. Manuscripta Math. 3 (1970), 331-342. | MR

[18] Street R.: The familial approach to total completeness and toposes. Trans. Amer. Math. Soc. 284 (1984), 355-369. | MR

[19] Street R., Walters R.: Yoneda structures on 2-categories. J. Algebra 50 (1978), 350-379. | MR | Zbl

[20] Tholen W.: Bildzerlegungen und algebraische Kategorien. Doctoral Dissertation, Universität Münster, 1974.

[21] Tholen W.: Factorizations, localizations and the orthogonal subcategory problem. Math. Nachr. 114 (1983), 63-85. | MR | Zbl

[22] Tholen W.: MacNeille completions of categories with local properties. Comment. Math. Univ. St. Pauli 28 (1979), 179-202. | MR