Extremal solutions of a general marginal problem
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 743-748 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The characterization of extremal points of the set of probability measures with given marginals is given in the general context of a marginal system. The sets of marginal uniqueness are studied and an example is added to illustrate the theory.
The characterization of extremal points of the set of probability measures with given marginals is given in the general context of a marginal system. The sets of marginal uniqueness are studied and an example is added to illustrate the theory.
Classification : 28A33, 46A55, 46N30, 52A05, 60B05
Keywords: marginal problem; marginal system; simplicial measure; set of marginal uniqueness
@article{CMUC_1991_32_4_a16,
     author = {Linhartov\'a, Petra},
     title = {Extremal solutions of a general marginal problem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {743--748},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159821},
     zbl = {0751.60006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a16/}
}
TY  - JOUR
AU  - Linhartová, Petra
TI  - Extremal solutions of a general marginal problem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 743
EP  - 748
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a16/
LA  - en
ID  - CMUC_1991_32_4_a16
ER  - 
%0 Journal Article
%A Linhartová, Petra
%T Extremal solutions of a general marginal problem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 743-748
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a16/
%G en
%F CMUC_1991_32_4_a16
Linhartová, Petra. Extremal solutions of a general marginal problem. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 743-748. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a16/

[1] Arnol'd V.I.: On functions of three variables (in Russian). Dokl. Akad. Nauk USSR 114 (1957), 679-681. | MR

[2] Beneš V., Štěpán J.: The support of extremal probability measures with given marginals. In: Math. Stat. and Prob. Theory A (1987), 33-41. | MR

[3] Beneš V., Štěpán J.: Extremal Solutions in the Marginal Problem. In: Advances in Probability Distributions with Given Marginals, Kluwer Academic Publishers, Dodrecht, 1991, 189-207. | MR

[4] Douglas R.G.: On extremal measures and subspace density. Michigan Math. J. 11 (1964), 243-246. | MR | Zbl

[5] Dunford N., Schwartz J.T.: Linear Operators. Interscience Publishers Inc., New York, 1958. | MR | Zbl

[6] Ersov M.: The Choquet theorem and stochastic equations. Analysis Math. 1 (1975), 259-271. | MR

[7] Hoffmann-Jørgensen J.: The general marginal problem. Lecture Notes in Math. 1242: Functional Analysis II, Springer-Verlag, 1987, 77-367. | MR

[8] Kolmogorov A.N.: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition (in Russian). Dokl. Akad. Nauk USSR 114 (1957), 953-956. | MR

[9] Letac G.: Representation des mesures de probabilité sur le produit de deux espaces denombrables, de marges données. Ann. Inst. Fourier 16 (1966), 497-507. | MR | Zbl

[10] Štěpán J.: Simplicial Measures. In: Contributions to Statistics (J. Hájek Memorial Volume), Praha, 1977, 239-251. | MR

[11] Štěpán J.: Probability Measures with Given Expectations. Proc. of the 2nd Prague Symp. on Asympt. Statistics, North Holland, 1979, 315-320. | MR

[12] Štěpán J.: Weak Convergence in Probability Theory (in Czech). Charles University, Prague, 1988, Dr.\thinspace Sc. dissertation.

[13] Štěpán J.: Simplicial Measures and Sets of Uniqueness in Marginal Problem. Statistics and Decisions, 1991, to appear. | MR

[14] Weizsäcker H. von, Winkler G.: Integral representation in the set of solutions of a generalized moment problem. Math. Ann. 246 (1979), 23-32. | MR