On the behaviour of solutions to the nonlinear elliptic Neumann problem in unbounded domains
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 723-729 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The asymptotic behaviour is studied for minima of regular variational problems with Neumann boundary conditions on noncompact part of boundary.
The asymptotic behaviour is studied for minima of regular variational problems with Neumann boundary conditions on noncompact part of boundary.
Classification : 35B40, 35J20, 35J35, 35J50, 35J60, 35J65, 46G05, 49N60
Keywords: variational problem; Neumann boundary value problem; unbounded domains; asymptotic behaviour of solutions
@article{CMUC_1991_32_4_a14,
     author = {Tarba, L. and Star\'a, J.},
     title = {On the behaviour of solutions to the nonlinear elliptic {Neumann} problem in unbounded domains},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {723--729},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159819},
     zbl = {0752.35019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a14/}
}
TY  - JOUR
AU  - Tarba, L.
AU  - Stará, J.
TI  - On the behaviour of solutions to the nonlinear elliptic Neumann problem in unbounded domains
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 723
EP  - 729
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a14/
LA  - en
ID  - CMUC_1991_32_4_a14
ER  - 
%0 Journal Article
%A Tarba, L.
%A Stará, J.
%T On the behaviour of solutions to the nonlinear elliptic Neumann problem in unbounded domains
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 723-729
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a14/
%G en
%F CMUC_1991_32_4_a14
Tarba, L.; Stará, J. On the behaviour of solutions to the nonlinear elliptic Neumann problem in unbounded domains. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 723-729. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a14/

[1] Lax P.D.: Phragmen-Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations. Comm. Pure Appl. Math. 10 (1957), 361-389. | MR

[2] Oleĭnik O.A., Josif'jan G.A.: The Saint Venant principle for a mixed problem of elasticity theory and its applications. Dokl. Akad. Nauk USSR (5) 233 (1977), 824-827. | MR

[3] Tarba L.A.: On behaviour of the solutions to the elliptic equations in unbounded domains (in Russian). VINITI (1980), 2573.

[4] Grishina T.V.: On the regularity and the behaviour of solutions to the nonlinear elliptic Dirichlet boundary value problem in the neighbourhood of the singular point of the boundary (in Russian). Vestnik Mosk. Un. ser. 1, Matematika, Mechanika (1986), 4 84-87.

[5] Kondratiev V.A., Landis V.M.: Qualitative theory of linear partial differential equations of second order (in Russian). VINITI, Itogi nauki i techn., Sovr. probl. mat., Fund. napravlenije 32 (1988), 99-215.

[6] Sitnik S.M.: Rate of decay of the solutions of some elliptic and ultraelliptic equations (in Russian). Differentsial'nye Uravneniya (3) 24 (1988), 538-539. | MR

[7] Kantorovich L.V., Akilov C.P.: Functional Analysis (in Russian). Nauka, Moskva, 1977, second edition. | MR