On a certain class of subspectra
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 715-721 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to characterize a class of subspectra for which the geometric spectral radius is the same and depends only upon a commuting $n$-tuple of elements of a complex Banach algebra. We prove also that all these subspectra have the same capacity.
The aim of this paper is to characterize a class of subspectra for which the geometric spectral radius is the same and depends only upon a commuting $n$-tuple of elements of a complex Banach algebra. We prove also that all these subspectra have the same capacity.
Classification : 46H05, 46H30, 47A13
Keywords: Banach algebra; joint spectrum; subspectrum; spectroid; geometrical spectral radius; (joint) capacity
@article{CMUC_1991_32_4_a13,
     author = {So{\l}tysiak, Andrzej},
     title = {On a certain class of subspectra},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {715--721},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159818},
     zbl = {0763.46037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a13/}
}
TY  - JOUR
AU  - Sołtysiak, Andrzej
TI  - On a certain class of subspectra
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 715
EP  - 721
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a13/
LA  - en
ID  - CMUC_1991_32_4_a13
ER  - 
%0 Journal Article
%A Sołtysiak, Andrzej
%T On a certain class of subspectra
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 715-721
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a13/
%G en
%F CMUC_1991_32_4_a13
Sołtysiak, Andrzej. On a certain class of subspectra. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 715-721. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a13/

[1] Chō M., Takaguchi M.: Boundary points of joint numerical ranges. Pacific J. Math. 95 (1981), 27-35. | MR

[2] Chō M., Żelazko W.: On geometric spectral radius of commuting $n$-tuples of operators. to appear in Hokkaido Math. J. | MR

[3] Słodkowski Z., Żelazko W.: A note on semicharacters. in: Banach Center Publications, vol. 8, Spectral Theory, PWN, Warsaw, 1982, 397-402. | MR

[4] Sołtysiak A.: Capacity of finite systems of elements in Banach algebras. Comment. Math. 19 (1977), 381-387. | MR

[5] Sołtysiak A.: Some remarks on the joint capacities in Banach algebras. ibid. 20 (1978), 197-204. | MR

[6] Stirling D.S.G.: The joint capacity of elements of Banach algebras. J. London Math. Soc. (2), 10 (1975), 212-218. | MR | Zbl

[7] Żelazko W.: An axiomatic approach to joint spectra I. Studia Math. 64 (1979), 249-261. | MR

[8] Żelazko W.: Banach Algebras. Elsevier, PWN, Amsterdam, Warsaw, 1973. | MR