Keywords: Banach algebra; joint spectrum; subspectrum; spectroid; geometrical spectral radius; (joint) capacity
@article{CMUC_1991_32_4_a13,
author = {So{\l}tysiak, Andrzej},
title = {On a certain class of subspectra},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {715--721},
year = {1991},
volume = {32},
number = {4},
mrnumber = {1159818},
zbl = {0763.46037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a13/}
}
Sołtysiak, Andrzej. On a certain class of subspectra. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 715-721. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a13/
[1] Chō M., Takaguchi M.: Boundary points of joint numerical ranges. Pacific J. Math. 95 (1981), 27-35. | MR
[2] Chō M., Żelazko W.: On geometric spectral radius of commuting $n$-tuples of operators. to appear in Hokkaido Math. J. | MR
[3] Słodkowski Z., Żelazko W.: A note on semicharacters. in: Banach Center Publications, vol. 8, Spectral Theory, PWN, Warsaw, 1982, 397-402. | MR
[4] Sołtysiak A.: Capacity of finite systems of elements in Banach algebras. Comment. Math. 19 (1977), 381-387. | MR
[5] Sołtysiak A.: Some remarks on the joint capacities in Banach algebras. ibid. 20 (1978), 197-204. | MR
[6] Stirling D.S.G.: The joint capacity of elements of Banach algebras. J. London Math. Soc. (2), 10 (1975), 212-218. | MR | Zbl
[7] Żelazko W.: An axiomatic approach to joint spectra I. Studia Math. 64 (1979), 249-261. | MR
[8] Żelazko W.: Banach Algebras. Elsevier, PWN, Amsterdam, Warsaw, 1973. | MR