Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 703-713 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of this paper is to derive the error estimates for discretization in time of a semilinear parabolic equation in a Banach space. The estimates are given in the norm of the space $\Bbb X_{\alpha }$ for $0\alpha 1$ when the initial condition is not regular.
The purpose of this paper is to derive the error estimates for discretization in time of a semilinear parabolic equation in a Banach space. The estimates are given in the norm of the space $\Bbb X_{\alpha }$ for $0\alpha 1$ when the initial condition is not regular.
Classification : 34G20, 35G10, 35K22, 35K25, 35R20, 65J15, 65M15, 65M20
Keywords: error estimates; parabolic equation; backward Euler method; nonsmooth initial data
@article{CMUC_1991_32_4_a12,
     author = {Slodi\v{c}ka, Marian},
     title = {Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {703--713},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159817},
     zbl = {0755.65095},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a12/}
}
TY  - JOUR
AU  - Slodička, Marian
TI  - Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 703
EP  - 713
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a12/
LA  - en
ID  - CMUC_1991_32_4_a12
ER  - 
%0 Journal Article
%A Slodička, Marian
%T Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 703-713
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a12/
%G en
%F CMUC_1991_32_4_a12
Slodička, Marian. Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 703-713. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a12/

[1] Helfrich H.-P.: Error estimates for semidiscrete Galerkin type approximations to semilinear evolution equations with nonsmooth initial data. Numer. Math. 51 (1987), 559-569. | MR | Zbl

[2] Henry D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840, Springer Verlag, Berlin-Heidelberg-New York, 1981. | MR | Zbl

[3] Johnson C., Larsson S., Thomee V., Wahlbin L.B.: Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data. Math. Comp. 49 (1987), 331-357. | MR | Zbl

[4] Le Roux M.-N.: Semidiscretization in time for parabolic problems. Math. Comp. 33 (1979), 919-931. | MR | Zbl

[5] Le Roux M.-N., Thomee V.: Numerical solution of semilinear integrodifferential equations of parabolic type with nonsmooth data. SIAM J. Numer. Anal. 26 (1989), 1291-1309. | MR | Zbl

[6] Luskin M., Rannacher R.: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1982), 93-113. | MR | Zbl

[7] Mingyou H., Thomee V.: On the backward Euler method for parabolic equations with rough initial data. SIAM J. Numer. Anal. 19 (1982), 599-603. | MR | Zbl

[8] Sammon P.H.: Convergence estimates for semidiscrete parabolic equation approximations. SIAM J. Numer. Anal. 19 (1982), 68-92. | MR | Zbl

[9] Slodička M.: Error estimates for discretization in time to linear homogeneous parabolic equations with nonsmooth initial data. preprint JINR, E5-90-08, Dubna, 1990.

[10] Slodička M.: Error estimates for discretization in time to nonhomogeneous parabolic equations with rough initial data. preprint JINR, E5-90-212, Dubna, 1990.

[11] Taylor A.E.: Introduction to Functional Analysis. Wiley, New York, 1958. | MR | Zbl

[12] Thomee V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Math. 1054, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1984. | MR | Zbl

[13] Thomee V.: On the numerical solution of integro-differential equations of parabolic type. Inter. Ser. of Numer. Math., vol. 86, Birkhäuser Verlag Basel, 1988, pp. 477-493. | MR | Zbl

[14] Thomee V., Zhang N.-Y.: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comp. 53 (1989), 121-139. | MR | Zbl