Keywords: multivalued nonexpansive map; fixed points set; Mosco convergence
@article{CMUC_1991_32_4_a11,
author = {Pietramala, Paolamaria},
title = {Convergence of approximating fixed points sets for multivalued nonexpansive mappings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {697--701},
year = {1991},
volume = {32},
number = {4},
mrnumber = {1159816},
zbl = {0756.47039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a11/}
}
TY - JOUR AU - Pietramala, Paolamaria TI - Convergence of approximating fixed points sets for multivalued nonexpansive mappings JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 697 EP - 701 VL - 32 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a11/ LA - en ID - CMUC_1991_32_4_a11 ER -
%0 Journal Article %A Pietramala, Paolamaria %T Convergence of approximating fixed points sets for multivalued nonexpansive mappings %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 697-701 %V 32 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a11/ %G en %F CMUC_1991_32_4_a11
Pietramala, Paolamaria. Convergence of approximating fixed points sets for multivalued nonexpansive mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 697-701. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a11/
[1] Browder F.E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Rational. Mech. Anal. 24 (1967), 82-90. | MR | Zbl
[2] Reich S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980), 287-292. | MR | Zbl
[3] Singh S.P., Watson B.: On approximating fixed points. Proc. Symp. Pure Math. 45 (part 2) (1986), 393-395. | MR | Zbl
[4] Reich S.: Fixed points of contractive functions. Boll. UMI 5 (1972), 26-42. | MR | Zbl
[5] Ćirić L.B.: Fixed points for generalized multivalued contractions. Mat. Vesnik, N. Ser. 9 {(24)} (1972), 265-272. | MR
[6] Iséki K.: Multivalued contraction mappings in complete metric spaces. Math. Sem. Notes 2 (1974), 45-49. | MR
[7] Corley H.W.: Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120 (1986), 528-532. | MR | Zbl
[8] LamiDozo E.: Multivalued nonexpansive mappings and Opial's condition. Proc. Amer. Math. Soc. 38 (1973), 286-292. | MR