Convergence of approximating fixed points sets for multivalued nonexpansive mappings
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 697-701
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K$ be a closed convex subset of a Hilbert space $H$ and $T:K \multimap K$ a nonexpansive multivalued map with a unique fixed point $z$ such that $\{z\}=T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to $z$.
Let $K$ be a closed convex subset of a Hilbert space $H$ and $T:K \multimap K$ a nonexpansive multivalued map with a unique fixed point $z$ such that $\{z\}=T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to $z$.
Classification : 47H09, 47H10
Keywords: multivalued nonexpansive map; fixed points set; Mosco convergence
@article{CMUC_1991_32_4_a11,
     author = {Pietramala, Paolamaria},
     title = {Convergence of approximating fixed points sets for multivalued nonexpansive mappings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {697--701},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159816},
     zbl = {0756.47039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a11/}
}
TY  - JOUR
AU  - Pietramala, Paolamaria
TI  - Convergence of approximating fixed points sets for multivalued nonexpansive mappings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 697
EP  - 701
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a11/
LA  - en
ID  - CMUC_1991_32_4_a11
ER  - 
%0 Journal Article
%A Pietramala, Paolamaria
%T Convergence of approximating fixed points sets for multivalued nonexpansive mappings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 697-701
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a11/
%G en
%F CMUC_1991_32_4_a11
Pietramala, Paolamaria. Convergence of approximating fixed points sets for multivalued nonexpansive mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 697-701. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a11/

[1] Browder F.E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Rational. Mech. Anal. 24 (1967), 82-90. | MR | Zbl

[2] Reich S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980), 287-292. | MR | Zbl

[3] Singh S.P., Watson B.: On approximating fixed points. Proc. Symp. Pure Math. 45 (part 2) (1986), 393-395. | MR | Zbl

[4] Reich S.: Fixed points of contractive functions. Boll. UMI 5 (1972), 26-42. | MR | Zbl

[5] Ćirić L.B.: Fixed points for generalized multivalued contractions. Mat. Vesnik, N. Ser. 9 {(24)} (1972), 265-272. | MR

[6] Iséki K.: Multivalued contraction mappings in complete metric spaces. Math. Sem. Notes 2 (1974), 45-49. | MR

[7] Corley H.W.: Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120 (1986), 528-532. | MR | Zbl

[8] LamiDozo E.: Multivalued nonexpansive mappings and Opial's condition. Proc. Amer. Math. Soc. 38 (1973), 286-292. | MR