Keywords: radical class; factorization system
@article{CMUC_1991_32_4_a1,
author = {Gardner, B. J.},
title = {Radicals which define factorization systems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {601--607},
year = {1991},
volume = {32},
number = {4},
mrnumber = {1159806},
zbl = {0752.16009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a1/}
}
Gardner, B. J. Radicals which define factorization systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 601-607. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a1/
[1] Bousfield A.K.: Construction of factorization systems in categories. J. Pure Appl. Algebra 9 (1977), 207-220. | MR
[2] Fay T.H.: Compact modules. Comm. Algebra 16 (1988), 1209-1219. | MR | Zbl
[3] Fay T.H., Walls G.L.: Compact nilpotent groups. Comm. Algebra 17 (1989), 2255-2268. | MR | Zbl
[4] Fay T.H., Walls G.L.: Categorically compact locally nilpotent groups. Comm. Algebra 18 (1990), 3423-3435. | MR | Zbl
[5] Gardner B.J.: Some degeneracy and pathology in non-associative radical theory. Annales Univ. Sci. Budapest Sect. Math. 22-23 (1979-80), 65-74. | MR | Zbl
[6] Gardner B.J.: Radical Theory. Longman, Harlow, 1989. | MR | Zbl
[7] Herrlich H., Salicrup G., Strecker G.E.: Factorizations, denseness, separation, and relatively compact objects. Topology Appl. 27 (1987), 157-169. | MR | Zbl
[8] Manes E.G.: Compact Hausdorff objects. General Topology Appl. 4 (1974), 341-360. | MR | Zbl
[9] Mrówka S.: Compactness and product spaces. Colloq. Math. 7 (1959), 19-22. | MR
[10] Puczylowski E.R.: On unequivocal rings. Acta Math. Acad. Sci Hungar. 36 (1980), 57-62. | MR | Zbl
[11] Sands A.A.: On ideals in over-rings. Publ. Math. Debrecen 35 (1988), 273-279. | MR | Zbl
[12] Stewart P.N.: Strict radical classes of associative rings. Proc. Amer. Math. Soc. 39 (1973), 273-278. | MR | Zbl