Radicals which define factorization systems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 601-607 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
Classification : 16A21, 16N80, 16S90, 17A65, 18A20, 18E40
Keywords: radical class; factorization system
@article{CMUC_1991_32_4_a1,
     author = {Gardner, B. J.},
     title = {Radicals which define factorization systems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {601--607},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159806},
     zbl = {0752.16009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a1/}
}
TY  - JOUR
AU  - Gardner, B. J.
TI  - Radicals which define factorization systems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 601
EP  - 607
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a1/
LA  - en
ID  - CMUC_1991_32_4_a1
ER  - 
%0 Journal Article
%A Gardner, B. J.
%T Radicals which define factorization systems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 601-607
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a1/
%G en
%F CMUC_1991_32_4_a1
Gardner, B. J. Radicals which define factorization systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 601-607. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a1/

[1] Bousfield A.K.: Construction of factorization systems in categories. J. Pure Appl. Algebra 9 (1977), 207-220. | MR

[2] Fay T.H.: Compact modules. Comm. Algebra 16 (1988), 1209-1219. | MR | Zbl

[3] Fay T.H., Walls G.L.: Compact nilpotent groups. Comm. Algebra 17 (1989), 2255-2268. | MR | Zbl

[4] Fay T.H., Walls G.L.: Categorically compact locally nilpotent groups. Comm. Algebra 18 (1990), 3423-3435. | MR | Zbl

[5] Gardner B.J.: Some degeneracy and pathology in non-associative radical theory. Annales Univ. Sci. Budapest Sect. Math. 22-23 (1979-80), 65-74. | MR | Zbl

[6] Gardner B.J.: Radical Theory. Longman, Harlow, 1989. | MR | Zbl

[7] Herrlich H., Salicrup G., Strecker G.E.: Factorizations, denseness, separation, and relatively compact objects. Topology Appl. 27 (1987), 157-169. | MR | Zbl

[8] Manes E.G.: Compact Hausdorff objects. General Topology Appl. 4 (1974), 341-360. | MR | Zbl

[9] Mrówka S.: Compactness and product spaces. Colloq. Math. 7 (1959), 19-22. | MR

[10] Puczylowski E.R.: On unequivocal rings. Acta Math. Acad. Sci Hungar. 36 (1980), 57-62. | MR | Zbl

[11] Sands A.A.: On ideals in over-rings. Publ. Math. Debrecen 35 (1988), 273-279. | MR | Zbl

[12] Stewart P.N.: Strict radical classes of associative rings. Proc. Amer. Math. Soc. 39 (1973), 273-278. | MR | Zbl