On a class of locally Butler groups
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 597-600 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph_\omega$ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup_{\alpha \mu}B_\alpha$ of pure subgroups $B_\alpha$ having countable typesets.
A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph_\omega$ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup_{\alpha \mu}B_\alpha$ of pure subgroups $B_\alpha$ having countable typesets.
Classification : 20K20, 20K27, 20K35
Keywords: Butler group; generalized regular subgroup
@article{CMUC_1991_32_4_a0,
     author = {Bican, Ladislav},
     title = {On a class of locally {Butler} groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {597--600},
     year = {1991},
     volume = {32},
     number = {4},
     mrnumber = {1159805},
     zbl = {0748.20029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a0/}
}
TY  - JOUR
AU  - Bican, Ladislav
TI  - On a class of locally Butler groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 597
EP  - 600
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a0/
LA  - en
ID  - CMUC_1991_32_4_a0
ER  - 
%0 Journal Article
%A Bican, Ladislav
%T On a class of locally Butler groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 597-600
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a0/
%G en
%F CMUC_1991_32_4_a0
Bican, Ladislav. On a class of locally Butler groups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 4, pp. 597-600. http://geodesic.mathdoc.fr/item/CMUC_1991_32_4_a0/

[A] Arnold D.: Notes on Butler groups and balanced extensions. Boll. Un. Mat. Ital. A(6) 5 (1986), 175-184. | MR | Zbl

[B1] Bican L.: Splitting in abelian groups. Czech. Math. J. 28 (1978), 356-364. | MR | Zbl

[B2] Bican L.: Purely finitely generated groups. Comment. Math. Univ. Carolinae 21 (1980), 209-218. | MR

[BS] Bican L., Salce L., HASH(0x91ad320): Infinite rank Butler groups. Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, 171-189.

[BSS] Bican L., Salce L., Štěpán J.: A characterization of countable Butler groups. Rend. Sem. Mat. Univ. Padova 74 (1985), 51-58. | MR

[B] Butler M.C.R.: A class of torsion-free abelian groups of finite rank. Proc. London Math. Soc. 15 (1965), 680-698. | MR | Zbl

[D] Dugas M.: On some subgroups of infinite rank Butler groups. Rend. Sem. Mat. Univ. Padova 79 (1988), 153-161. | MR | Zbl

[DHR] Dugas M., Hill P., Rangaswamy K.M.: Infinite rank Butler groups II. Trans. Amer. Math. Soc. 320 (1990), 643-664. | MR

[DR] Dugas M., Rangaswamy K.M.: Infinite rank Butler groups. Trans. Amer. Math. Soc. 305 (1988), 129-142. | MR | Zbl

[F1] Fuchs L.: Infinite Abelian groups. vol. I and II, Academic Press, New York, 1973 and 1977. | MR | Zbl

[F2] Fuchs L.: Infinite rank Butler groups. preprint.

[FM] Fuchs L., Metelli C.: Countable Butler groups. Contemporary Math., to appear. | MR | Zbl

[FV] Fuchs L., Viljoen G.: Note on the extensions of Butler groups. Bull. Austral. Math. Soc. 41 (1990), 117-122. | MR