A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 447-462 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Oscillation criteria of Nehari-type for the equation $(-1)^n(x^{\alpha}y^{(n)})^{(n)} + q(x)y = 0$, $\alpha\in {\bold R}$, are established. These criteria impose no sign restriction on the function $q(x)$ and generalize some recent results of the second author.
Oscillation criteria of Nehari-type for the equation $(-1)^n(x^{\alpha}y^{(n)})^{(n)} + q(x)y = 0$, $\alpha\in {\bold R}$, are established. These criteria impose no sign restriction on the function $q(x)$ and generalize some recent results of the second author.
Classification : 34A30, 34C10
Keywords: Nehari-type oscillation criteria; conjugate points; self-adjoint equation; principal solution
@article{CMUC_1991_32_3_a6,
     author = {Do\v{s}l\'y, Ond\v{r}ej and Fiedler, Frank},
     title = {A remark on {Nehari-type} oscillation criteria for self-adjoint linear differential equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {447--462},
     year = {1991},
     volume = {32},
     number = {3},
     mrnumber = {1159793},
     zbl = {0751.34017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a6/}
}
TY  - JOUR
AU  - Došlý, Ondřej
AU  - Fiedler, Frank
TI  - A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 447
EP  - 462
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a6/
LA  - en
ID  - CMUC_1991_32_3_a6
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%A Fiedler, Frank
%T A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 447-462
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a6/
%G en
%F CMUC_1991_32_3_a6
Došlý, Ondřej; Fiedler, Frank. A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 447-462. http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a6/

[1] Coppel W.A.: Disconjugacy. Lectures Notes in Math. No. 220, Springer Verlag, Berlin-Heidelberg, 1971. | MR | Zbl

[2] Došlý O.: The existence of conjugate points for self-adjoint linear differential equations. Proc. Roy. Soc. Edinburgh 112A, (1989), 73-85. | MR

[3] Došlý O.: Oscillation criteria for self-adjoint linear differential equations. submitted to Diff. Integral Equations.

[4] Fiedler F.: Hinreichende Oszillationkriterien für gewöhnliche Differentialoperatoren höher Ordnung. Math. Nachr. 96 (1980), 35-48. | MR

[5] Fiedler F.: Oszillationkriterien vom Nehari-Typ für gewöhnliche Differentialoperatoren vierter and sechster Ordnung. Beiträge Anal. 18 (1981), 113-132. | MR

[6] Fiedler F.: Oscillation criteria for a class of $2n$-order ordinary differential operators. J. Diff. Equations 42 (1981), 155-185. | MR | Zbl

[7] Fiedler F.: Oscillation criteria for a special class of $2n$-order ordinary differential equations. Math. Nachr. 131 (1987), 205-218. | MR | Zbl

[8] Glazman I.M.: Direct Methods of Qualitative Spectral Analysis of Singular Differential operators. Davey, Jerusalem, 1965. | MR | Zbl

[9] Lewis R.T.: Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators. Pacific J. Math. 51 (1974), 221-234. | MR | Zbl

[10] Müller-Pfeiffer E.: Oscillation criteria of Nehari-type for Schrödinger equation. Math. Nachr. 96 (1980), 185-194. | MR

[11] Nehari Z.: Oscillation criteria for second order linear differential equations. Trans. Amer. Math. Soc. 85 (1957), 428-445. | MR | Zbl