Orthomodular lattices with almost orthogonal sets of atoms
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 423-429 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The set $A$ of all atoms of an atomic orthomodular lattice is said to be almost ortho\-go\-nal if the set $\{b\in A:b\nleq a'\}$ is finite for every $a\in A$. It is said to be strongly almost ortho\-go\-nal if, for every $a\in A$, any sequence $b_1, b_2,\dots $ of atoms such that $a\nleq b'_1, b_1 \nleq b'_2, \dots $ contains at most finitely many distinct elements. We study the relation and consequences of these notions. We show among others that a complete atomic orthomodular lattice is a compact topological one if and only if the set of all its atoms is almost ortho\-go\-nal.
The set $A$ of all atoms of an atomic orthomodular lattice is said to be almost ortho\-go\-nal if the set $\{b\in A:b\nleq a'\}$ is finite for every $a\in A$. It is said to be strongly almost ortho\-go\-nal if, for every $a\in A$, any sequence $b_1, b_2,\dots $ of atoms such that $a\nleq b'_1, b_1 \nleq b'_2, \dots $ contains at most finitely many distinct elements. We study the relation and consequences of these notions. We show among others that a complete atomic orthomodular lattice is a compact topological one if and only if the set of all its atoms is almost ortho\-go\-nal.
Classification : 03G12, 06C15
Keywords: atomic orthomodular lattice; topological orthomodular lattice; almost orthogonal sets of atoms
@article{CMUC_1991_32_3_a2,
     author = {Pulmannov\'a, Sylvia and Rogalewicz, Vladim{\'\i}r},
     title = {Orthomodular lattices with almost orthogonal sets of atoms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {423--429},
     year = {1991},
     volume = {32},
     number = {3},
     mrnumber = {1159789},
     zbl = {0762.06003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a2/}
}
TY  - JOUR
AU  - Pulmannová, Sylvia
AU  - Rogalewicz, Vladimír
TI  - Orthomodular lattices with almost orthogonal sets of atoms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 423
EP  - 429
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a2/
LA  - en
ID  - CMUC_1991_32_3_a2
ER  - 
%0 Journal Article
%A Pulmannová, Sylvia
%A Rogalewicz, Vladimír
%T Orthomodular lattices with almost orthogonal sets of atoms
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 423-429
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a2/
%G en
%F CMUC_1991_32_3_a2
Pulmannová, Sylvia; Rogalewicz, Vladimír. Orthomodular lattices with almost orthogonal sets of atoms. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 423-429. http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a2/

[1] Chevalier G.: Around the relative center property in orthomodular lattices. preprint, 1989. | MR | Zbl

[2] Janowitz M.: Separation conditions in relatively complemented lattices. Colloq. Math. 22 (1970), 25-34. | MR | Zbl

[3] Kalmbach G.: Orthomodular Lattices. Academic Press, London, 1983. | MR | Zbl

[4] Navara M., Rogalewicz V.: The pasting constructions for orthomodular posets. to appear in Math. Nachrichten. | MR | Zbl

[5] Pulmannová S., Riečanová Z.: Compact topological orthomodular lattices. preprint, 1990. | MR

[6] Tae Ho Choe, Greechie R.: Profinite orthomodular lattices. preprint. | MR