$\Cal P$-approximable compact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 583-595 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For every topological property $\Cal P$, we define the class of $\Cal P$-approximable spaces which consists of spaces X having a countable closed cover $\gamma $ such that the ``section'' $X(x,\gamma )= \bigcap \{F\in \gamma :x\in F\}$ has the property $\Cal P$ for each $x\in X$. It is shown that every $\Cal P$-approximable compact space has $\Cal P$, if $\Cal P$ is one of the following properties: countable tightness, $\aleph _0$-scatteredness with respect to character, $C$-closedness, sequentiality (the last holds under MA or $2^{\aleph _0}2^{\aleph _1}$). Metrizable-approximable spaces are studied: every compact space in this class has a dense, Čech-complete, paracompact subspace; moreover, if $X$ is linearly ordered, then $X$ contains a dense metrizable subspace.
For every topological property $\Cal P$, we define the class of $\Cal P$-approximable spaces which consists of spaces X having a countable closed cover $\gamma $ such that the ``section'' $X(x,\gamma )= \bigcap \{F\in \gamma :x\in F\}$ has the property $\Cal P$ for each $x\in X$. It is shown that every $\Cal P$-approximable compact space has $\Cal P$, if $\Cal P$ is one of the following properties: countable tightness, $\aleph _0$-scatteredness with respect to character, $C$-closedness, sequentiality (the last holds under MA or $2^{\aleph _0}2^{\aleph _1}$). Metrizable-approximable spaces are studied: every compact space in this class has a dense, Čech-complete, paracompact subspace; moreover, if $X$ is linearly ordered, then $X$ contains a dense metrizable subspace.
Classification : 54A20, 54A25, 54A35, 54B05, 54B10, 54D20, 54D30, 54D55, 54E35, 54F05
Keywords: $\Cal P$-approximable space; Lindelöf $\Sigma $-space; compact; metrizable; $C$-closed; sequential; linearly ordered
@article{CMUC_1991_32_3_a17,
     author = {Tka\v{c}enko, Michael G.},
     title = {$\Cal P$-approximable compact spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {583--595},
     year = {1991},
     volume = {32},
     number = {3},
     mrnumber = {1159804},
     zbl = {0766.54019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a17/}
}
TY  - JOUR
AU  - Tkačenko, Michael G.
TI  - $\Cal P$-approximable compact spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 583
EP  - 595
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a17/
LA  - en
ID  - CMUC_1991_32_3_a17
ER  - 
%0 Journal Article
%A Tkačenko, Michael G.
%T $\Cal P$-approximable compact spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 583-595
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a17/
%G en
%F CMUC_1991_32_3_a17
Tkačenko, Michael G. $\Cal P$-approximable compact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 583-595. http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a17/

[1] Alexandroff P.S., Urysohn P.S.: Memoir on compact topological spaces (in Russian). Moscow, Nauka, 1971. | MR

[2] Arhangel'skii A.V.: Bicompact sets and the topology of spaces. Trans. Mosc. Math. Soc. 13 (1965), 1-62. | MR

[3] Arhangel'skii A.V.: On one class of spaces that contains all metrizable and all locally compact spaces (in Russian). Matem. Sb. 67 (1965), 55-88. | MR

[4] Arhangel'skii A.V.: On bicompacta hereditarily satisfying the Souslin condition. Tightness and free sequences. Soviet. Math. Dokl. 12 (1971), 1253-1257.

[5] Arhangel'skii A.V.: On compact spaces which are unions of certain collections of subspaces of special type. Comment. Math. Univ. Carolinae 17 (1976), 737-753. | MR

[6] Arhangel'skii A.V.: On topologies weakly connected with orderings (in Russian). Dokl AN SSSR 238 (1978), 773-776. | MR

[7] Arhangel'skii A.V.: On spaces of continuous functions with the pointwise convergence topology (in Russian). Dokl. AN SSSR 240 (1978), 505-508. | MR

[8] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants (in Russian). Uspechi Mat. Nauk 33 (1978), 29-84. | MR

[9] Arhangel'skii A.V.: On invariants of type character and weight (in Russian). Trudy Mosc. Mat. Obsch. 38 (1979), 3-27. | MR

[10] Balcar B., Pelant J., Simon P.: The space of ultrafilters on $\Bbb N$ covered by nowhere dense sets. Fund. Math. 110 (1980), 11-24. | MR

[11] Engelking R.: General Topology. Warszawa, PWN, 1977. | MR | Zbl

[12] Franklin S.P.: Spaces in which sequences suffice, II. Fund. Math. 57 (1967), 51-56. | MR | Zbl

[13] Gul'ko S.P.: On the structure of spaces of continuous functions and their hereditary paracompactness (in Russian). Uspechi Mat. Nauk 34 (1979), 33-40. | MR

[14] Ismail M.: Products of $C$-closed spaces. Houston J. Math. 10 (1984), 195-199. | MR

[15] Ismail M., Nyikos P.: On spaces in which countably compact sets are closed, and hereditary properties. Topology Appl. 11 (1980), 281-292. | MR | Zbl

[16] Juhász I.: Cardinal functions in topology. Math. Centre Tracts, 34, Amsterdam, 1971. | MR

[17] Leiderman A.G.: On dense metrizable subspaces of Corson compact spaces (in Russian). Matem. Zametki 38 (1985), 440-449. | MR

[18] Malyhin V.I.: On the tightness and the Souslin number of ${exp} X$ and of a product of spaces. Soviet Math. Dokl. 13 (1972), 496-499.

[19] Malyhin V.I., Šapirovskii B.E.: Martin's axiom and properties of topological spaces (in Russian). Dokl. AN SSSR 213 (1973), 532-535. | MR

[20] Nagami K.: $\Sigma $-spaces. Fund. Math. 65 (1969), 169-192. | MR | Zbl

[21] Noble N.: Products with closed projections, II. Trans. Amer. Math. Soc. 160 (1971), 169-183. | MR | Zbl

[22] Šapirovskii B.E.: On mappings onto Tychonoff cubes (in Russian). Uspechi Mat. Nauk 35 (1980), 122-130. | MR

[23] Simon P.: Covering of a space by nowhere dense sets. Comment. Math. Univ. Carolinae 18 (1977), 755-761. | MR | Zbl

[24] Sokolov G.A.: On some classes of compact spaces lying in $\Sigma $-products. Comment. Math. Univ. Carolinae 25 (1984), 219-231. | MR | Zbl

[25] Štěpánek P., Vopěnka P.: Decomposition of metric spaces into nowhere dense sets. Comment. Math. Univ. Carolinae 8 (1967), 387-404, 567-568. | MR

[26] Talagrand M.: Sur les espaces Banach faiblement $K$-analytiques. Comp. Rend. Acad. Sci., Ser. A 285 (1977), 119-122. | MR

[27] Tkačenko M.G.: Some addition theorems in the class of compact spaces (in Russian). Sibir. Mat. J. 24 (1983), 135-143. | MR

[28] Tkačenko M.G.: On compactness of countably compact spaces having additional structure. Trans. Mosc. Math. Soc. 1984, Issue 2, 149-167.

[29] Tkačenko M.G.: The notion of o-tightness and $C$-embedded subspaces of products. Topology Appl. 15 (1983), 93-98. | MR

[30] Todorčević S.: Cardinal functions on linearly ordered topological spaces, - Topology and order structures, Part I (Lubbock, Tex., 1980). p. 177-179, Math. Centre Tracts, 142, Math. Centrum, Amsterdam, 1981 (). | MR

[31] Todorčević S.: Stationary sets and continuums. Publ. Inst. Math., Nouvelle sér. 27 (1981), 249-262. | MR

[32] White H.E.: First-countable spaces that have special pseudobases. Canad. Math. Bull. 21 (1978), 103-112. | MR