On zero-dimensionality of subgroups of locally compact groups
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 581-582
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Improving the recent result of the author we show that $\operatorname{ind}H=0$ is equivalent to $\operatorname{dim} H=0$ for every subgroup $H$ of a Hausdorff locally compact group $G$.
Improving the recent result of the author we show that $\operatorname{ind}H=0$ is equivalent to $\operatorname{dim} H=0$ for every subgroup $H$ of a Hausdorff locally compact group $G$.
Classification :
22A05, 22D05, 54D45, 54F45, 54H11, 54H99
Keywords: zero-dimensionality; covering dimension; inductive dimension; subgroup; locally compact group
Keywords: zero-dimensionality; covering dimension; inductive dimension; subgroup; locally compact group
@article{CMUC_1991_32_3_a16,
author = {Shakhmatov, Dmitrii B.},
title = {On zero-dimensionality of subgroups of locally compact groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {581--582},
year = {1991},
volume = {32},
number = {3},
mrnumber = {1159803},
zbl = {0746.22004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a16/}
}
Shakhmatov, Dmitrii B. On zero-dimensionality of subgroups of locally compact groups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 581-582. http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a16/
[1] Engelking R.: General Topology. Warszawa, PWN, 1977. | MR | Zbl
[2] Hewitt E., Ross K.A.: Abstract Harmonic Analysis, vol. 1. Structure of Topological Groups. Integration Theory. Group Representations. Die Grundlehren der mathematischen Wissenshaften, Bd. 115, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. | MR | Zbl
[3] Shakhmatov D.B.: Imbeddings into topological groups preserving dimensions. Topology Appl. 36 (1990), 181-204. | MR | Zbl
[4] Tkačenko M.G.: Factorization theorems for topological groups and their applications. Topology Appl. 38 (1991), 21-37. | MR