Approximate inverse systems of uniform spaces and an application of inverse systems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 551-565 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The fundamental properties of approximate inverse systems of uniform spaces are established. The limit space of an approximate inverse sequence of complete metric spaces is the limit of an inverse sequence of some of these spaces. This has an application to the dimension of the limit space of an approximate inverse system. A topologically complete space with $\operatorname{dim} \leq n$ is the limit of an approximate inverse system of metric polyhedra of $\operatorname{dim} \leq n$. A completely metrizable separable space with $\operatorname{dim} \leq n$ is the limit of an inverse sequence of locally finite polyhedra of $\operatorname{dim} \leq n$. Finally, a new proof is derived of the important equality $\operatorname{dim} = \operatorname{Ind}$ for metric spaces.
The fundamental properties of approximate inverse systems of uniform spaces are established. The limit space of an approximate inverse sequence of complete metric spaces is the limit of an inverse sequence of some of these spaces. This has an application to the dimension of the limit space of an approximate inverse system. A topologically complete space with $\operatorname{dim} \leq n$ is the limit of an approximate inverse system of metric polyhedra of $\operatorname{dim} \leq n$. A completely metrizable separable space with $\operatorname{dim} \leq n$ is the limit of an inverse sequence of locally finite polyhedra of $\operatorname{dim} \leq n$. Finally, a new proof is derived of the important equality $\operatorname{dim} = \operatorname{Ind}$ for metric spaces.
Classification : 54B25, 54B35, 54B99, 54E15, 54F45
Keywords: inverse systems; approximate inverse systems; uniform; metric and complete spaces; covering and inductive dimension
@article{CMUC_1991_32_3_a14,
     author = {Charalambous, M. G.},
     title = {Approximate inverse systems of uniform spaces  and an application of inverse systems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {551--565},
     year = {1991},
     volume = {32},
     number = {3},
     mrnumber = {1159801},
     zbl = {0785.54016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a14/}
}
TY  - JOUR
AU  - Charalambous, M. G.
TI  - Approximate inverse systems of uniform spaces  and an application of inverse systems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 551
EP  - 565
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a14/
LA  - en
ID  - CMUC_1991_32_3_a14
ER  - 
%0 Journal Article
%A Charalambous, M. G.
%T Approximate inverse systems of uniform spaces  and an application of inverse systems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 551-565
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a14/
%G en
%F CMUC_1991_32_3_a14
Charalambous, M. G. Approximate inverse systems of uniform spaces  and an application of inverse systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 551-565. http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a14/

[1] Charalambous M.G.: A new covering dimension function for uniform spaces. J. London Math. Soc. (2) 11 (1975), 137-143. | MR | Zbl

[2] Charalambous M.G.: The dimension of inverse limits. Proc. Amer. 58 (1976), 289-295. | MR | Zbl

[3] Engelking R.: General Topology. Polish Scientific Publishers, Warsaw, 1977. | MR | Zbl

[4] Engelking R.: Dimension Theory. Polish Scientific Publishers, Warsaw, 1978. | MR | Zbl

[5] Freudenthal H.: Entwicklungen von Räumen und ihren Gruppen. Compositio Math. 4 (1937), 145-234. | MR | Zbl

[6] Hurewicz W., Wallman H.: Dimension Theory. Princeton University Press, Princeton, 1941. | MR | Zbl

[7] Isbell J.R.: Uniform spaces. Amer. Math. Soc. Surveys 12, 1964. | MR | Zbl

[8] Mardešić S.: On covering dimension and inverse limits of compact spaces. Illinois J. Math. 4 (1960), 278-291. | MR

[9] Mardešić S., Rubin L.R.: Approximate uniform spaces of compacta and covering dimension. Pacific J. Math. 138 (1989), 129-144. | MR

[10] Nagami K.: Dimension Theory. Academic Press, New York and London, 1970. | MR | Zbl

[11] Pasynkov B.A.: On polyhedra spectra and dimension of bicompacta and of bicompact groups (in Russian). Dokl. Akad. Nauk SSSR 121 (1958), 45-48. | MR

[12] Pasynkov B.A.: Factorization theorems in dimension theory. Russian Math. Surveys 36 (1981), 175-209. | MR | Zbl

[13] Pears A.R.: Dimension Theory of General Spaces. Cambridge Univ. Press, Cambridge, 1976. | MR | Zbl

[14] Spanier E.H.: Algebraic Topology. McGraw-Hill Inc., New York, 1966. | MR | Zbl