Stable points of unit ball in Orlicz spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 501-515 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to investigate stability of unit ball in Orlicz spaces, endowed with the Luxemburg norm, from the ``local'' point of view. Firstly, those points of the unit ball are characterized which are stable, i.e., at which the map $z\rightarrow \{(x,y):\frac{1}{2}(x+y)=z\}$ is lower-semicontinuous. Then the main theorem is established: An Orlicz space $L^{\varphi }(\mu )$ has stable unit ball if and only if either $L^{\varphi }(\mu )$ is finite dimensional or it is isometric to $L^{\infty }(\mu )$ or $\varphi $ satisfies the condition $\Delta _r$ or $\Delta _r^0$ (appropriate to the measure $\mu $ and the function $\varphi $) or $c(\varphi )\infty , \varphi (c(\varphi ))\infty $ and $\mu (T)\infty $. Finally, it is proved that the set of all stable points of norm one is dense in the unit sphere $S(L^{\varphi }(\mu ))$.
The aim of this paper is to investigate stability of unit ball in Orlicz spaces, endowed with the Luxemburg norm, from the ``local'' point of view. Firstly, those points of the unit ball are characterized which are stable, i.e., at which the map $z\rightarrow \{(x,y):\frac{1}{2}(x+y)=z\}$ is lower-semicontinuous. Then the main theorem is established: An Orlicz space $L^{\varphi }(\mu )$ has stable unit ball if and only if either $L^{\varphi }(\mu )$ is finite dimensional or it is isometric to $L^{\infty }(\mu )$ or $\varphi $ satisfies the condition $\Delta _r$ or $\Delta _r^0$ (appropriate to the measure $\mu $ and the function $\varphi $) or $c(\varphi )\infty , \varphi (c(\varphi ))\infty $ and $\mu (T)\infty $. Finally, it is proved that the set of all stable points of norm one is dense in the unit sphere $S(L^{\varphi }(\mu ))$.
Classification : 46B20, 46E30
Keywords: stable point; stable unit ball; extreme point; Orlicz space
@article{CMUC_1991_32_3_a11,
     author = {Wis{\l}a, Marek},
     title = {Stable points of unit ball in {Orlicz} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {501--515},
     year = {1991},
     volume = {32},
     number = {3},
     mrnumber = {1159798},
     zbl = {0770.46013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a11/}
}
TY  - JOUR
AU  - Wisła, Marek
TI  - Stable points of unit ball in Orlicz spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 501
EP  - 515
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a11/
LA  - en
ID  - CMUC_1991_32_3_a11
ER  - 
%0 Journal Article
%A Wisła, Marek
%T Stable points of unit ball in Orlicz spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 501-515
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a11/
%G en
%F CMUC_1991_32_3_a11
Wisła, Marek. Stable points of unit ball in Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 501-515. http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a11/

[1] Clausing A., Papadopoulou S.: Stable convex sets and extreme operators. Math. Ann. 231 (1978), 193-200. | MR

[2] Engelking R.: General Topology. Polish Scientific Publishers, Warsaw, 1977. | MR | Zbl

[3] Grząślewicz R.: Finite dimensional Orlicz spaces. Bull. Acad. Polon. Sci.: Math. 33 (1985), 277-283. | MR

[4] Lazar A.J.: Affine functions on simplexes and extreme operators. Israel J. Math. 5 (1967), 31-43. | MR | Zbl

[5] Lima Å.: On continuous convex functions and split faces. Proc. London Math. Soc. 25 (1972), 27-40. | MR | Zbl

[6] Luxemburg W.A.J.: Banach function spaces. Thesis, Delft, 1955. | MR | Zbl

[7] Michael E.: Continuous selections I. Ann. of Math. (2) 63 (1956), 361-382. | MR | Zbl

[8] Musielak J.: Orlicz spaces and modular spaces. Lecture Notes in Math. 1034, Springer Verlag, 1983. | MR | Zbl

[9] O'Brien R.C.: On the openness of the barycentre map. Math. Ann. 223 (1976), 207-212. | MR | Zbl

[10] Orlicz W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Intern. Acad. Pol., série A, Kraków, 1932, 207-220. | Zbl

[11] Papadopoulou S.: On the geometry of stable compact convex sets. Math. Ann. 229 (1977), 193-200. | MR | Zbl

[12] Suarez-Granero A.: Stable unit balls in Orlicz spaces. Proc. Amer. Math. Soc. 109, 1 (1990), 97-104. | MR | Zbl

[13] Vesterstrøm J.: On open maps, compact convex sets and operator algebras. J. London Math. Soc. 6 (1973), 289-297. | MR

[14] Wisła M.: Extreme points and stable unit balls in Orlicz sequence spaces. Archiv der Math. 56 (1991), 482-490. | MR

[15] Wisła M.: Stable unit balls in finite dimensional generalized Orlicz spaces. Proceedings of the Second Conference ``Function Spaces'', Poznań, 1989, Teubner Texte zur Mathematik, to appear. | MR

[16] Wisła M.: Continuity of the identity embedding of Musielak-Orlizc sequence spaces. Proc. of the 14th Winter School on Abstract Analysis, Srní, 1986, Supp. ai Rendiconti del Circolo Mat. di Palermo 14 (1987), 427-437. | MR