When is every order ideal a ring ideal?
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 411-416 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A lattice-ordered ring $\Bbb R$ is called an {\sl OIRI-ring\/} if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those $f$-rings $\Bbb R$ such that $\Bbb R/\Bbb I$ is contained in an $f$-ring with an identity element that is a strong order unit for some nil $l$-ideal $\Bbb I$ of $\Bbb R$. In particular, if $P(\Bbb R)$ denotes the set of nilpotent elements of the $f$-ring $\Bbb R$, then $\Bbb R$ is an OIRI-ring if and only if $\Bbb R/P(\Bbb R)$ is contained in an $f$-ring with an identity element that is a strong order unit.
A lattice-ordered ring $\Bbb R$ is called an {\sl OIRI-ring\/} if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those $f$-rings $\Bbb R$ such that $\Bbb R/\Bbb I$ is contained in an $f$-ring with an identity element that is a strong order unit for some nil $l$-ideal $\Bbb I$ of $\Bbb R$. In particular, if $P(\Bbb R)$ denotes the set of nilpotent elements of the $f$-ring $\Bbb R$, then $\Bbb R$ is an OIRI-ring if and only if $\Bbb R/P(\Bbb R)$ is contained in an $f$-ring with an identity element that is a strong order unit.
Classification : 06F25, 13C05, 16D15, 16W80
Keywords: $f$-ring; OIRI-ring; strong order unit; $l$-ideal; nilpotent; annihilator; order ideal; ring ideal; unitable; archimedean
@article{CMUC_1991_32_3_a0,
     author = {Henriksen, M. and Larson, S. and Smith, F. A.},
     title = {When is every order ideal a ring ideal?},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {411--416},
     year = {1991},
     volume = {32},
     number = {3},
     mrnumber = {1159787},
     zbl = {0744.06008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a0/}
}
TY  - JOUR
AU  - Henriksen, M.
AU  - Larson, S.
AU  - Smith, F. A.
TI  - When is every order ideal a ring ideal?
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 411
EP  - 416
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a0/
LA  - en
ID  - CMUC_1991_32_3_a0
ER  - 
%0 Journal Article
%A Henriksen, M.
%A Larson, S.
%A Smith, F. A.
%T When is every order ideal a ring ideal?
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 411-416
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a0/
%G en
%F CMUC_1991_32_3_a0
Henriksen, M.; Larson, S.; Smith, F. A. When is every order ideal a ring ideal?. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 3, pp. 411-416. http://geodesic.mathdoc.fr/item/CMUC_1991_32_3_a0/

[BKW] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics 608, Springer-Verlag, New York, 1977. | MR | Zbl

[BT] Basly M., Triki A.: $F$-algebras in which order ideals are ring ideals. Proc. Konin. Neder. Akad. Wet. 91 (1988), 231-234. | MR | Zbl

[FH] Feldman D., Henriksen M.: $f$-rings, subdirect products of totally ordered rings, and the prime ideal theorem. ibid., 91 (1988), 121-126. | MR | Zbl

[HI] Henriksen M., Isbell J.: Lattice ordered rings and function rings. Pacific J. Math. 12 (1962), 533-565. | MR | Zbl

[J] Jech T.: The Axiom of Choice. North Holland Publ. Co., Amsterdam, 1973. | MR | Zbl

[LZ] Luxemburg W., Zaanen A.: Riesz Spaces. ibid., 1971. | Zbl