On the covering dimension of the fixed point set of certain multifunctions
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 281-286
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the covering dimension of the fixed point set of lower semicontinuous multifunctions of which many values can be non-closed or non-convex. An application to variational inequalities is presented.
We study the covering dimension of the fixed point set of lower semicontinuous multifunctions of which many values can be non-closed or non-convex. An application to variational inequalities is presented.
Classification :
47H04, 47H10, 47H19, 49A29, 49J40
Keywords: multifunction; fixed point; covering dimension; variational inequality
Keywords: multifunction; fixed point; covering dimension; variational inequality
@article{CMUC_1991_32_2_a9,
author = {Ricceri, Ornella Naselli},
title = {On the covering dimension of the fixed point set of certain multifunctions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {281--286},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137789},
zbl = {0753.47034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a9/}
}
TY - JOUR AU - Ricceri, Ornella Naselli TI - On the covering dimension of the fixed point set of certain multifunctions JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 281 EP - 286 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a9/ LA - en ID - CMUC_1991_32_2_a9 ER -
Ricceri, Ornella Naselli. On the covering dimension of the fixed point set of certain multifunctions. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 281-286. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a9/
[1] Aubin J.-P.: Mathematical methods of game and economic theory. North-Holland Publishing Company, 1979. | MR | Zbl
[2] Engelking R.: Dimension theory. PWN, 1978. | MR | Zbl
[3] Naselli Ricceri O.: $\Cal A$-fixed points of multi-valued contractions. J. Math. Anal. Appl. 135 (1988), 406-418. | MR | Zbl
[4] Ricceri B.: Fixed points of lower semicontinuous multifunctions and applications: alternative and minimax theorems. Rend. Accad. Naz. Sci. XL, Mem. Mat. 103 (1985), 331-338. | MR | Zbl
[5] Saint Raymond J.: Points fixes des multiplications à valeurs convexes. C.R. Acad. Sci. Paris, Sér. I, 298 (1984), 71-74. | MR