An existence theorem for a class of nonlinear elliptic optimal control problems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 273-279 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.
We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.
Classification : 35B37, 35J65, 49A29, 49J20, 49J40
Keywords: Sobolev embedding theorem; Novikov's theorem; Aumann's theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation
@article{CMUC_1991_32_2_a8,
     author = {Papageorgiou, Nikolaos S.},
     title = {An existence theorem for a class of nonlinear  elliptic optimal control problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {273--279},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137788},
     zbl = {0752.49005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a8/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
TI  - An existence theorem for a class of nonlinear  elliptic optimal control problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 273
EP  - 279
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a8/
LA  - en
ID  - CMUC_1991_32_2_a8
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%T An existence theorem for a class of nonlinear  elliptic optimal control problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 273-279
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a8/
%G en
%F CMUC_1991_32_2_a8
Papageorgiou, Nikolaos S. An existence theorem for a class of nonlinear  elliptic optimal control problems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 273-279. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a8/

[1] Barbu V.: Optimal Control of Variational Inequalities. Research Notes in Math., vol. 100, Pitman, Boston, 1984. | MR | Zbl

[2] Browder F.: Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 2659-2661. | MR

[3] Cesari L.: Optimization-Theory and Applications. Springer-Verlag, New York, 1983. | MR | Zbl

[4] Delahaye J.-P., Denel J.: The continuities of the point to set maps: Definitions and equivalences. Math. Programming Study 10 (1979), 8-12.

[5] Levin V.: Borel sections of many-valued maps. Siberian Math. Journal 19 (1978), 434-438. | MR

[6] Lions J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. SpringerVerlag, New York, 1971. | MR | Zbl

[7] Raitum U.E.: On optimal control problems for linear elliptic equations. Soviet. Math. Doklady 20 (1979), 129-132. | MR

[8] Saint-Beuve M.-F.: On the extension of von Neumann-Aumann's theorem. Journ. Funct. Analysis 17 (1974), 112-129. | MR

[9] Zeidler E.: Nonlinear Functional Analysis and Applications II. Springer-Verlag, Berlin, 1990.

[10] Zolezzi T.: Teoremi di esistenza per problemi di controllo ottimo retti da equazioni ellitiche o paraboliche. Rend. Sem. Mat. Univ. Padova 44 (1970), 155-173. | MR