Keywords: Sobolev embedding theorem; Novikov's theorem; Aumann's theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation
@article{CMUC_1991_32_2_a8,
author = {Papageorgiou, Nikolaos S.},
title = {An existence theorem for a class of nonlinear elliptic optimal control problems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {273--279},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137788},
zbl = {0752.49005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a8/}
}
TY - JOUR AU - Papageorgiou, Nikolaos S. TI - An existence theorem for a class of nonlinear elliptic optimal control problems JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 273 EP - 279 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a8/ LA - en ID - CMUC_1991_32_2_a8 ER -
Papageorgiou, Nikolaos S. An existence theorem for a class of nonlinear elliptic optimal control problems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 273-279. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a8/
[1] Barbu V.: Optimal Control of Variational Inequalities. Research Notes in Math., vol. 100, Pitman, Boston, 1984. | MR | Zbl
[2] Browder F.: Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 2659-2661. | MR
[3] Cesari L.: Optimization-Theory and Applications. Springer-Verlag, New York, 1983. | MR | Zbl
[4] Delahaye J.-P., Denel J.: The continuities of the point to set maps: Definitions and equivalences. Math. Programming Study 10 (1979), 8-12.
[5] Levin V.: Borel sections of many-valued maps. Siberian Math. Journal 19 (1978), 434-438. | MR
[6] Lions J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. SpringerVerlag, New York, 1971. | MR | Zbl
[7] Raitum U.E.: On optimal control problems for linear elliptic equations. Soviet. Math. Doklady 20 (1979), 129-132. | MR
[8] Saint-Beuve M.-F.: On the extension of von Neumann-Aumann's theorem. Journ. Funct. Analysis 17 (1974), 112-129. | MR
[9] Zeidler E.: Nonlinear Functional Analysis and Applications II. Springer-Verlag, Berlin, 1990.
[10] Zolezzi T.: Teoremi di esistenza per problemi di controllo ottimo retti da equazioni ellitiche o paraboliche. Rend. Sem. Mat. Univ. Padova 44 (1970), 155-173. | MR