Generating real maps on a biordered set
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 265-272 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps $X\rightarrow \Bbb R$ from an initial one $X\rightarrow \Bbb R$, where $X$ is a set endowed with two orders, $\leq $ and $\leq ^{\ast }$, related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone.
Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps $X\rightarrow \Bbb R$ from an initial one $X\rightarrow \Bbb R$, where $X$ is a set endowed with two orders, $\leq $ and $\leq ^{\ast }$, related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone.
Classification : 06A06, 06A10, 47A30, 47A53
Keywords: derivated map; biordered set; admissible order
@article{CMUC_1991_32_2_a7,
     author = {Martinon, Antonio},
     title = {Generating real maps on a biordered set},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {265--272},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137787},
     zbl = {0757.47013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a7/}
}
TY  - JOUR
AU  - Martinon, Antonio
TI  - Generating real maps on a biordered set
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 265
EP  - 272
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a7/
LA  - en
ID  - CMUC_1991_32_2_a7
ER  - 
%0 Journal Article
%A Martinon, Antonio
%T Generating real maps on a biordered set
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 265-272
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a7/
%G en
%F CMUC_1991_32_2_a7
Martinon, Antonio. Generating real maps on a biordered set. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 265-272. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a7/

[BG] Banas J., Goebel K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker, Lecture Notes in Pure and Applied Math., vol.60; New York, Basel, 1980. | MR | Zbl

[BO] Bourbaki N.: Éléments de Mathématique. Topologie Générale. Hermann, Paris, 1971. | MR | Zbl

[FA] Fajnshtejn A.S.: On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian). Spektr. Teor. Oper. 6 (1985), 182-195 Zbl 634 #47010.

[GM1] Gonzalez M., Martinon A.: Operational quantities and operator ideals. Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 383-387. | MR

[GM2] Gonzalez M., Martinon A.: Operational quantities derived from the norm and measures of noncompactness. Proc. Royal Irish Acad., to appear. | MR

[GM3] Gonzalez M., Martinon A.: A generalization of semi-Fredholm operators. 1990, preprint.

[LS] Lebow A., Schechter M.: Semigroups of operators and measures of noncompactness. J. Func. Anal. 7 (1971), 1-26. | MR | Zbl

[MA1] Martinon A.: Generating operational quantities in Fredholm theory. Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 449-453. | MR

[MA2] Martinon A.: Cantidades operacionales en Teoría de Fredholm (Tesis). Univ. La Laguna, 1989. | MR

[PI] Pietsch A.: Operator Ideals. North-Holland; Amsterdam, New York, Oxford, 1980. | MR | Zbl

[SC] Schechter M.: Quantities related to strictly singular operators. Indiana Univ. Math. J. 21 (1972), 1061-1071. | MR | Zbl

[SE] Sedaev A.A.: The structure of certain linear operators (in Russian). Mat. Issled. 5 (1970), 166-175 MR 43 #2540; Zbl. 247 #47005. | MR

[TY] Tylli H.-O.: On the asymptotic behaviour of some quantities related to semi-Fredholm operators. J. London Math. Soc. (2) 31 (1985), 340-348. | MR | Zbl

[WE] Weis L.: Über strikt singulare und strikt cosingulare Operatoren in Banachräumen (Dissertation). Univ. Bonn, 1974.

[ZE] Zemanek J.: Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour. Studia Math. 80 (1984), 219-234. | MR | Zbl