A two weight weak inequality for potential type operators
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 251-263 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give conditions on pairs of weights which are necessary and sufficient for the operator $T(f)=K\ast f$ to be a weak type mapping of one weighted Lorentz space in another one. The kernel $K$ is an anisotropic radial decreasing function.
We give conditions on pairs of weights which are necessary and sufficient for the operator $T(f)=K\ast f$ to be a weak type mapping of one weighted Lorentz space in another one. The kernel $K$ is an anisotropic radial decreasing function.
Classification : 31B15, 42B20, 46E30, 47G10
Keywords: integral operator; anisotropic potential; weighted Lorentz space
@article{CMUC_1991_32_2_a6,
     author = {Kokilashvili, Vachtang and R\'akosn{\'\i}k, Ji\v{r}{\'\i}},
     title = {A two weight weak inequality for potential type operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {251--263},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137786},
     zbl = {0746.42011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a6/}
}
TY  - JOUR
AU  - Kokilashvili, Vachtang
AU  - Rákosník, Jiří
TI  - A two weight weak inequality for potential type operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 251
EP  - 263
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a6/
LA  - en
ID  - CMUC_1991_32_2_a6
ER  - 
%0 Journal Article
%A Kokilashvili, Vachtang
%A Rákosník, Jiří
%T A two weight weak inequality for potential type operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 251-263
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a6/
%G en
%F CMUC_1991_32_2_a6
Kokilashvili, Vachtang; Rákosník, Jiří. A two weight weak inequality for potential type operators. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 251-263. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a6/

[1] Chang H.M., Hunt R.A., Kurtz D.S.: The Hardy-Littlewood maximal function on $L(p,q)$ spaces with weight. Indiana Univ. Math. J. 31 (1982), no.1, 109-120. | MR

[2] Gabidzashvili M.: Weighted inequalities for anisotropic potentials. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 82 (1986), 25-36. | MR

[3] Gabidzashvili M., Genebashvili J., Kokilashvili V.: Two weight inequalities for generalized potentials (in Russian). Trudy Mat. Inst. Steklov, to appear. | MR

[4] Kokilashvili V.: Weighted inequalities for maximal functions and fractional integrals in Lorentz spaces. Math. Nachr. 133 (1987), 33-42. | MR | Zbl

[5] Kokilashvili V., Gabidzashvili M.: Weighted inequalities for anisotropic potentials and maximal functions (in Russian). Dokl. Akad. Nauk SSSR 282 (1985), no. 6, 1304-1306 English translation: Soviet Math. Dokl. 31 (1985), no. 3, 583-585. | MR

[6] Kokilashvili V., Gabidzashvili M.: Two weight weak type inequalities for fractional type integrals. preprint no. 45, Mathematical Institute of the Czechoslovak Academy of Sciences, Prague 1989.

[7] Sawyer E.T.: A two weight type inequality for fractional integrals. Trans. Amer. Math. Soc. 281 (1984), no. 1, 339-345. | MR