Sigma order continuity and best approximation in $L_\varrho$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 241-250 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we give a characterization of $\sigma $-order continuity of modular function spaces $L_\varrho$ in terms of the existence of best approximants by elements of order closed sublattices of $L_\varrho\,$. We consider separately the case of Musielak--Orlicz spaces generated by non-$\sigma $-finite measures. Such spaces are not modular function spaces and the proofs require somewhat different methods.
In this paper we give a characterization of $\sigma $-order continuity of modular function spaces $L_\varrho$ in terms of the existence of best approximants by elements of order closed sublattices of $L_\varrho\,$. We consider separately the case of Musielak--Orlicz spaces generated by non-$\sigma $-finite measures. Such spaces are not modular function spaces and the proofs require somewhat different methods.
Classification : 41A50, 41A65, 46E30
Keywords: best approximation; lattices; modular function spaces; $L_\varrho $-spaces; Orlicz spaces
@article{CMUC_1991_32_2_a5,
     author = {Kilmer, Shelby J. and Kozƚowski, Wojciech M. and Lewicki, Grzegorz},
     title = {Sigma order continuity and best approximation in $L_\varrho$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {241--250},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137785},
     zbl = {0754.41017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a5/}
}
TY  - JOUR
AU  - Kilmer, Shelby J.
AU  - Kozƚowski, Wojciech M.
AU  - Lewicki, Grzegorz
TI  - Sigma order continuity and best approximation in $L_\varrho$-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 241
EP  - 250
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a5/
LA  - en
ID  - CMUC_1991_32_2_a5
ER  - 
%0 Journal Article
%A Kilmer, Shelby J.
%A Kozƚowski, Wojciech M.
%A Lewicki, Grzegorz
%T Sigma order continuity and best approximation in $L_\varrho$-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 241-250
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a5/
%G en
%F CMUC_1991_32_2_a5
Kilmer, Shelby J.; Kozƚowski, Wojciech M.; Lewicki, Grzegorz. Sigma order continuity and best approximation in $L_\varrho$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 241-250. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a5/

[1] Ando T., Amemiya I.: Almost everywhere convergence of prediction sequences in $L_p(1< p<\infty)$. Z. Wahrscheinlichkeitstheorie verw. Gebiete 4 (1965), 113-120. | MR

[2] Birnbaum Z., Orlicz W.: Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math. 3 (1931), 1-67. | Zbl

[3] Kilmer S., Kozlowski W.M., Lewicki G.: Best approximants in modular function spaces. Journ. Approx. Th. 63 (1990), 338-367. | MR | Zbl

[4] Kozlowski W.M.: Modular Function Spaces. Series of Monographs and Textbooks in Pure and Applied Mathematics, 122, Dekker, New York, Basel, 1988. | MR | Zbl

[5] Kozlowski W.M.: Notes on modular function spaces I. Comment. Math. 28 (1988), 87-100. | MR | Zbl

[6] Kozlowski W.M.: Notes on modular function spaces II. Comment. Math. 28 (1988), 101-116. | MR | Zbl

[7] Krasnosel'skii M.A., Rutickii Y.B.: Convex functions and Orlicz spaces. Noordhoff, Groningen, 1961. | MR

[8] Landers D., Rogge L.: Best approximants in $L_\varphi $-spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete 51 (1980), 215-237. | MR

[9] Lindenstrauss J., Tzafriri J.: Classical Banach Spaces II: Function Spaces. Springer-Verlag, Berlin, Heidelberg, New York, 1979. | MR | Zbl

[10] Luxemburg W., Zaanen A.: Notes on Banach function spaces I-XIII. Proc. Royal Acad. Sci., Amsterdam (1963) A-66, 135-153, 239-263, 496-504, 655-681; (1964) A-64, 101-119; (1964) A-67, 360-376, 493-543. | MR

[11] Musielak J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. | MR | Zbl

[12] Orlicz W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Acad. Polon. Sci. Ser A (1932), 207-220. | Zbl

[13] Orlicz W.: Über Räumen $L^M$. Bull. Acad. Polon. Sci. Ser A (1936), 93-107.

[14] Shintani T., Ando T.: Best approximants in $L_1$ space. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 33-39. | MR | Zbl

[15] Turett B.: Fenchel-Orlicz spaces. Dissertationes Math. 181 (1980), 1-60. | MR | Zbl

[16] Zaanen A.C.: Integration. North Holland, Amsterdam, London, 1967. | MR | Zbl