Keywords: best approximation; lattices; modular function spaces; $L_\varrho $-spaces; Orlicz spaces
@article{CMUC_1991_32_2_a5,
author = {Kilmer, Shelby J. and Kozƚowski, Wojciech M. and Lewicki, Grzegorz},
title = {Sigma order continuity and best approximation in $L_\varrho$-spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {241--250},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137785},
zbl = {0754.41017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a5/}
}
TY - JOUR AU - Kilmer, Shelby J. AU - Kozƚowski, Wojciech M. AU - Lewicki, Grzegorz TI - Sigma order continuity and best approximation in $L_\varrho$-spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 241 EP - 250 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a5/ LA - en ID - CMUC_1991_32_2_a5 ER -
%0 Journal Article %A Kilmer, Shelby J. %A Kozƚowski, Wojciech M. %A Lewicki, Grzegorz %T Sigma order continuity and best approximation in $L_\varrho$-spaces %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 241-250 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a5/ %G en %F CMUC_1991_32_2_a5
Kilmer, Shelby J.; Kozƚowski, Wojciech M.; Lewicki, Grzegorz. Sigma order continuity and best approximation in $L_\varrho$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 241-250. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a5/
[1] Ando T., Amemiya I.: Almost everywhere convergence of prediction sequences in $L_p(1< p<\infty)$. Z. Wahrscheinlichkeitstheorie verw. Gebiete 4 (1965), 113-120. | MR
[2] Birnbaum Z., Orlicz W.: Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math. 3 (1931), 1-67. | Zbl
[3] Kilmer S., Kozlowski W.M., Lewicki G.: Best approximants in modular function spaces. Journ. Approx. Th. 63 (1990), 338-367. | MR | Zbl
[4] Kozlowski W.M.: Modular Function Spaces. Series of Monographs and Textbooks in Pure and Applied Mathematics, 122, Dekker, New York, Basel, 1988. | MR | Zbl
[5] Kozlowski W.M.: Notes on modular function spaces I. Comment. Math. 28 (1988), 87-100. | MR | Zbl
[6] Kozlowski W.M.: Notes on modular function spaces II. Comment. Math. 28 (1988), 101-116. | MR | Zbl
[7] Krasnosel'skii M.A., Rutickii Y.B.: Convex functions and Orlicz spaces. Noordhoff, Groningen, 1961. | MR
[8] Landers D., Rogge L.: Best approximants in $L_\varphi $-spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete 51 (1980), 215-237. | MR
[9] Lindenstrauss J., Tzafriri J.: Classical Banach Spaces II: Function Spaces. Springer-Verlag, Berlin, Heidelberg, New York, 1979. | MR | Zbl
[10] Luxemburg W., Zaanen A.: Notes on Banach function spaces I-XIII. Proc. Royal Acad. Sci., Amsterdam (1963) A-66, 135-153, 239-263, 496-504, 655-681; (1964) A-64, 101-119; (1964) A-67, 360-376, 493-543. | MR
[11] Musielak J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. | MR | Zbl
[12] Orlicz W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Acad. Polon. Sci. Ser A (1932), 207-220. | Zbl
[13] Orlicz W.: Über Räumen $L^M$. Bull. Acad. Polon. Sci. Ser A (1936), 93-107.
[14] Shintani T., Ando T.: Best approximants in $L_1$ space. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 33-39. | MR | Zbl
[15] Turett B.: Fenchel-Orlicz spaces. Dissertationes Math. 181 (1980), 1-60. | MR | Zbl
[16] Zaanen A.C.: Integration. North Holland, Amsterdam, London, 1967. | MR | Zbl