Sets invariant under projections onto two dimensional subspaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 233-239
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The Blaschke--Kakutani result characterizes inner product spaces $E$, among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace $F$ there is a norm 1 linear projection onto $F$. In this paper, we determine which closed neighborhoods $B$ of zero in a real locally convex space $E$ of dimension at least 3 have the property that for every 2 dimensional subspace $F$ there is a continuous linear projection $P$ onto $F$ with $P(B)\subseteq B$.
The Blaschke--Kakutani result characterizes inner product spaces $E$, among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace $F$ there is a norm 1 linear projection onto $F$. In this paper, we determine which closed neighborhoods $B$ of zero in a real locally convex space $E$ of dimension at least 3 have the property that for every 2 dimensional subspace $F$ there is a continuous linear projection $P$ onto $F$ with $P(B)\subseteq B$.
Classification :
46A03, 46A55, 46C05, 46C15, 52A07, 52A15
Keywords: inner product space; two dimensional subspace; projection
Keywords: inner product space; two dimensional subspace; projection
@article{CMUC_1991_32_2_a4,
author = {Fitzpatrick, Simon and Calvert, Bruce},
title = {Sets invariant under projections onto two dimensional subspaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {233--239},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137784},
zbl = {0756.46010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a4/}
}
TY - JOUR AU - Fitzpatrick, Simon AU - Calvert, Bruce TI - Sets invariant under projections onto two dimensional subspaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 233 EP - 239 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a4/ LA - en ID - CMUC_1991_32_2_a4 ER -
Fitzpatrick, Simon; Calvert, Bruce. Sets invariant under projections onto two dimensional subspaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 233-239. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a4/
[1] Amir D.: Characterizations of Inner Product Spaces. Birkhäuser Verlag, Basel, Boston, Stuttgart, 1986. | MR | Zbl
[2] Calvert B., Fitzpatrick S.: Nonexpansive projections onto two dimensional subspaces of Banach spaces. Bull. Aust. Math. Soc. 37 (1988), 149-160. | MR | Zbl
[3] Fitzpatrick S., Calvert B.: Sets invariant under projections onto one dimensional subspaces. Comment. Math. Univ. Carolinae 32 (1991), 227-232. | MR | Zbl