Sets invariant under projections onto one dimensional subspaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 227-232
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The Hahn--Banach theorem implies that if $m$ is a one dimensional subspace of a t.v.s. $E$, and $B$ is a circled convex body in $E$, there is a continuous linear projection $P$ onto $m$ with $P(B)\subseteq B$. We determine the sets $B$ which have the property of being invariant under projections onto lines through $0$ subject to a weak boundedness type requirement.
The Hahn--Banach theorem implies that if $m$ is a one dimensional subspace of a t.v.s. $E$, and $B$ is a circled convex body in $E$, there is a continuous linear projection $P$ onto $m$ with $P(B)\subseteq B$. We determine the sets $B$ which have the property of being invariant under projections onto lines through $0$ subject to a weak boundedness type requirement.
Classification :
46A55, 52A07, 52A10
Keywords: convex; projection; Hahn--Banach; subsets of $\Bbb R^2$
Keywords: convex; projection; Hahn--Banach; subsets of $\Bbb R^2$
@article{CMUC_1991_32_2_a3,
author = {Fitzpatrick, Simon and Calvert, Bruce},
title = {Sets invariant under projections onto one dimensional subspaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {227--232},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137783},
zbl = {0756.52002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a3/}
}
TY - JOUR AU - Fitzpatrick, Simon AU - Calvert, Bruce TI - Sets invariant under projections onto one dimensional subspaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 227 EP - 232 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a3/ LA - en ID - CMUC_1991_32_2_a3 ER -
Fitzpatrick, Simon; Calvert, Bruce. Sets invariant under projections onto one dimensional subspaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 227-232. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a3/
[1] Schaeffer H.H.: Topological Vector Spaces. MacMillan, N.Y., 1966. | MR