Einstein metrics on a class of five-dimensional homogeneous spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 389-393 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that there is exactly one homothety class of invariant Einstein metrics in each space $SU(2) \times SU(2) / SO(2)_r (r\in Q, \, |r|\neq 1)$ defined below.
We prove that there is exactly one homothety class of invariant Einstein metrics in each space $SU(2) \times SU(2) / SO(2)_r (r\in Q, \, |r|\neq 1)$ defined below.
Classification : 53C25, 53C30
Keywords: homogeneous Riemannian manifolds; Einstein manifolds; Ricci tensor; sectional curvature
@article{CMUC_1991_32_2_a21,
     author = {Rodionov, E. D.},
     title = {Einstein metrics on a class of five-dimensional  homogeneous spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {389--393},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137801},
     zbl = {0747.53037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a21/}
}
TY  - JOUR
AU  - Rodionov, E. D.
TI  - Einstein metrics on a class of five-dimensional  homogeneous spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 389
EP  - 393
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a21/
LA  - en
ID  - CMUC_1991_32_2_a21
ER  - 
%0 Journal Article
%A Rodionov, E. D.
%T Einstein metrics on a class of five-dimensional  homogeneous spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 389-393
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a21/
%G en
%F CMUC_1991_32_2_a21
Rodionov, E. D. Einstein metrics on a class of five-dimensional  homogeneous spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 389-393. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a21/

[B] Besse A.: Einstein manifolds. Springer Verlag, Berlin, 1987. | MR | Zbl

[J] Jensen G.R.: Homogeneous Einstein spaces of dimension $4$. J. of Diff. Geom. 3 (1969), 309-349. | MR

[K-V] Kowalski O., Vanhecke L.: Classification of five-dimensional naturally reductive spaces. Math. Proc. Camb. Phil. Soc. 97 (1985), 445-463. | MR | Zbl