Einstein metrics on a class of five-dimensional homogeneous spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 389-393
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that there is exactly one homothety class of invariant Einstein metrics in each space $SU(2) \times SU(2) / SO(2)_r (r\in Q, \, |r|\neq 1)$ defined below.
We prove that there is exactly one homothety class of invariant Einstein metrics in each space $SU(2) \times SU(2) / SO(2)_r (r\in Q, \, |r|\neq 1)$ defined below.
Classification :
53C25, 53C30
Keywords: homogeneous Riemannian manifolds; Einstein manifolds; Ricci tensor; sectional curvature
Keywords: homogeneous Riemannian manifolds; Einstein manifolds; Ricci tensor; sectional curvature
@article{CMUC_1991_32_2_a21,
author = {Rodionov, E. D.},
title = {Einstein metrics on a class of five-dimensional homogeneous spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {389--393},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137801},
zbl = {0747.53037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a21/}
}
Rodionov, E. D. Einstein metrics on a class of five-dimensional homogeneous spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 389-393. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a21/
[B] Besse A.: Einstein manifolds. Springer Verlag, Berlin, 1987. | MR | Zbl
[J] Jensen G.R.: Homogeneous Einstein spaces of dimension $4$. J. of Diff. Geom. 3 (1969), 309-349. | MR
[K-V] Kowalski O., Vanhecke L.: Classification of five-dimensional naturally reductive spaces. Math. Proc. Camb. Phil. Soc. 97 (1985), 445-463. | MR | Zbl