Normal structure and weakly normal structure of Orlicz spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 219-225
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Every Orlicz space equipped with Orlicz norm has weak sum property, therefore, it has weakly normal structure and fixed point property. A criterion of sum property also of normal structure for such spaces is given as well, which shows that every Orlicz space has isonormal structure.
Every Orlicz space equipped with Orlicz norm has weak sum property, therefore, it has weakly normal structure and fixed point property. A criterion of sum property also of normal structure for such spaces is given as well, which shows that every Orlicz space has isonormal structure.
@article{CMUC_1991_32_2_a2,
author = {Chen, Shutao and Duan, Yanzheng},
title = {Normal structure and weakly normal structure of {Orlicz} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {219--225},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137782},
zbl = {0760.46023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a2/}
}
TY - JOUR AU - Chen, Shutao AU - Duan, Yanzheng TI - Normal structure and weakly normal structure of Orlicz spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 219 EP - 225 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a2/ LA - en ID - CMUC_1991_32_2_a2 ER -
Chen, Shutao; Duan, Yanzheng. Normal structure and weakly normal structure of Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 219-225. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a2/