Normal structure and weakly normal structure of Orlicz spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 219-225 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Every Orlicz space equipped with Orlicz norm has weak sum property, therefore, it has weakly normal structure and fixed point property. A criterion of sum property also of normal structure for such spaces is given as well, which shows that every Orlicz space has isonormal structure.
Every Orlicz space equipped with Orlicz norm has weak sum property, therefore, it has weakly normal structure and fixed point property. A criterion of sum property also of normal structure for such spaces is given as well, which shows that every Orlicz space has isonormal structure.
Classification : 46B20, 46B25, 46E30
Keywords: Orlicz space; normal structure
@article{CMUC_1991_32_2_a2,
     author = {Chen, Shutao and Duan, Yanzheng},
     title = {Normal structure and weakly normal structure  of {Orlicz} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {219--225},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137782},
     zbl = {0760.46023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a2/}
}
TY  - JOUR
AU  - Chen, Shutao
AU  - Duan, Yanzheng
TI  - Normal structure and weakly normal structure  of Orlicz spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 219
EP  - 225
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a2/
LA  - en
ID  - CMUC_1991_32_2_a2
ER  - 
%0 Journal Article
%A Chen, Shutao
%A Duan, Yanzheng
%T Normal structure and weakly normal structure  of Orlicz spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 219-225
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a2/
%G en
%F CMUC_1991_32_2_a2
Chen, Shutao; Duan, Yanzheng. Normal structure and weakly normal structure  of Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 219-225. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a2/

[1] Wu Congxin, Wang Tingfu, Chen Shutao, Wang Yuwen: Geometry of Orlicz spaces. Harbin, 1986.

[2] Wu Congxin, Wang Tingfu: Orlicz spaces and their applications. Harbin, 1983.

[3] Landes T.: Permanence properties of normal structure. Pacific J. Math. 110, No. 1 (1984), 125-143. | MR | Zbl