The compact extension property: the role of compactness
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 369-375 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider separable metrizable topological spaces. Among other things we prove that there exists a non-contractible space with the compact extension property and we prove a new version of realization of polytopes for $\operatorname{ANR}$'s.
We consider separable metrizable topological spaces. Among other things we prove that there exists a non-contractible space with the compact extension property and we prove a new version of realization of polytopes for $\operatorname{ANR}$'s.
Classification : 54C55, 55M15, 57N17, 57N20
Keywords: absolute retract; the compact extension property; contractibility; simplicial complex; partial realization
@article{CMUC_1991_32_2_a18,
     author = {van der Bijl, Jos and van Mill, Jan},
     title = {The compact extension property: the role of compactness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {369--375},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137798},
     zbl = {0753.55002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a18/}
}
TY  - JOUR
AU  - van der Bijl, Jos
AU  - van Mill, Jan
TI  - The compact extension property: the role of compactness
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 369
EP  - 375
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a18/
LA  - en
ID  - CMUC_1991_32_2_a18
ER  - 
%0 Journal Article
%A van der Bijl, Jos
%A van Mill, Jan
%T The compact extension property: the role of compactness
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 369-375
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a18/
%G en
%F CMUC_1991_32_2_a18
van der Bijl, Jos; van Mill, Jan. The compact extension property: the role of compactness. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 369-375. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a18/

[1] Ancel F.D.: The role of countable dimensionality in the theory of cell-like relations. Trans. A.M.S. 287 (1985), 1-40. | MR | Zbl

[2] van der Bijl J., van Mill J.: Linear spaces, absolute retracts and the compact extension property. Proc. A.M.S. 104 (1988), 942-952. | MR | Zbl

[3] van der Bijl J., Dobrowolski T., Hart K.P., van Mill J.: Admissibility, homeomorphism extension and the AR-property in topological linear spaces. submitted to Proc. A.M.S. | Zbl

[4] van der Bijl J.: Extension of continuous functions with compact domain. Ph.D. thesis, Vrije Universiteit, Amsterdam, 1991, to appear.

[5] Borsuk K.: Theory of retracts. PWN, Warszawa, 1967. | MR | Zbl

[6] Curtis D.W., van Mill J.: The compact extension property. Proc. Sixth Prague Topology Symposium, Heldermann, Berlin, 1988, pp. 115-119. | MR | Zbl

[7] Dobrowolski T.: On extending mappings into nonlocally convex metric spaces. Proc. A.M.S. 93 (1985), 555-560. | MR

[8] Dranishnikov A.N.: On a problem of P.S. Alexandrov. Matem. Sbornik 135 (1988), 551-557 (Russian) =Math. USSR Sbornik 63 (1989), 539-545. | MR

[9] Engelking R.: General Topology. PWN, Warszawa, 1977. | MR | Zbl

[10] Hu S.-T.: Theory of Retracts. Wayne State University Press, Detroit, 1965. | MR | Zbl

[11] Kuratowski K.: Sur quelques problèmes topologiques concernant le prolongement des fonctions continus. Colloq. Math. 2 (1951), 186-191. | MR

[12] van Mill J.: Another counterexample in ANR-theory. Proc. A.M.S. 97 (1986), 136-138. | MR | Zbl

[13] van Mill J.: Infinite-dimensional topology: prerequisites and introduction. North-Holland Publishing Company, Amsterdam, 1989. | MR | Zbl