On $\omega^2$-saturated families
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 355-359 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If there is no inner model with measurable cardinals, then for each cardinal $\lambda $ there is an almost disjoint family $\Cal A_{\lambda}$ of countable subsets of $\lambda $ such that every subset of $\lambda $ with order type $\geq {\omega^{\scriptscriptstyle2}}$ contains an element of $\Cal A_{\lambda}$.
If there is no inner model with measurable cardinals, then for each cardinal $\lambda $ there is an almost disjoint family $\Cal A_{\lambda}$ of countable subsets of $\lambda $ such that every subset of $\lambda $ with order type $\geq {\omega^{\scriptscriptstyle2}}$ contains an element of $\Cal A_{\lambda}$.
Classification : 03E05, 03E35, 03E55
Keywords: almost disjoint; saturated family; refinement; large cardinals
@article{CMUC_1991_32_2_a16,
     author = {Soukup, Lajos},
     title = {On $\omega^2$-saturated families},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {355--359},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137796},
     zbl = {0755.03027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a16/}
}
TY  - JOUR
AU  - Soukup, Lajos
TI  - On $\omega^2$-saturated families
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 355
EP  - 359
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a16/
LA  - en
ID  - CMUC_1991_32_2_a16
ER  - 
%0 Journal Article
%A Soukup, Lajos
%T On $\omega^2$-saturated families
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 355-359
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a16/
%G en
%F CMUC_1991_32_2_a16
Soukup, Lajos. On $\omega^2$-saturated families. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 355-359. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a16/

[{1}] Balcar B., Dočkálková J., Simon P.: Almost disjoint families of countable sets. in Proc. Coll. Soc. J. Bolyai 37, Finite and Infinite Sets, Eger, 1981, vol I.

[{2}] Erdös P., Hajnal A.: Unsolved problems in set theory. Proc. Symp. Pure Math., vol. 13, part 1, Am. Math. Soc., R. I. 1971, 17-48. | MR

[{3}] Erdös P., Hajnal A.: Unsolved and solved problems in set theory. Proc Symp. Pure Math., vol. 25, Am. Math. Soc., R. I. 1971, 269-287. | MR

[{4}] Goldstern M., Judah H., Shelah S.: Saturated families, and more on regular spaces omitting cardinals. preprint. | MR

[{5}] Hajnal A.: Some results and problem on set theory. Acta Math. Acad. Sci. Hung. 11 (1960), 277-298. | MR

[{6}] Hajnal A., Juhász I., Soukup L.: On saturated almost disjoint families. Comment. Math. Univ. Carolinae 28 (1987), 629-633. | MR

[{7}] Jech T.: Set Theory. Academic Press, New York, 1978. | MR | Zbl

[{8}] Komáth P.: Dense systems of almost disjoint sets. in Proc. Coll. Soc. J. Bolyai 37, Finite and Infinite Sets, Eger, 1981, vol I.