Keywords: trace theory; anisotropic Sobolev spaces
@article{CMUC_1991_32_2_a12,
author = {Weidemaier, Peter},
title = {The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {307--314},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137792},
zbl = {0770.46018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a12/}
}
TY - JOUR
AU - Weidemaier, Peter
TI - The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
SP - 307
EP - 314
VL - 32
IS - 2
UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a12/
LA - en
ID - CMUC_1991_32_2_a12
ER -
%0 Journal Article
%A Weidemaier, Peter
%T The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 307-314
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a12/
%G en
%F CMUC_1991_32_2_a12
Weidemaier, Peter. The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 307-314. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a12/
[A] Adams R.A.: Sobolev Spaces. New York - San Francisco - London: Academic Press 1975. | MR | Zbl
[B/I/N] Besov O.V., Il'in V.P., Nikol'skii S.M.: Integral Representations of Functions and Imbedding Theorems, Vol. I. Wiley, 1978. | Zbl
[I] Il'in V.P.: The properties of some classes of differentiable functions of several variables defined in an n-dimensional region. Transl. AMS 81 (1969), 91-256 Trudy Mat. Inst. Steklov 66 (1962), 227-363. | MR
[I/S] Il'in V.P., Solonnikov V.A.: On some properties of differentiable functions of several variables. Transl. AMS 81 (1969), 67-90 Trudy Mat. Inst. Steklov 66 (1962), 205-226. | MR
[K/J/F] Kufner A., John O., Fučik S.: Function Spaces. Leyden, Noordhoff Int. Publ. 1977. | MR
[L/S/U] Ladyshenskaya O.A., Solonnikov V.A., Uralceva N.N: Linear and Quasilinear Equations of Parabolic Type. Am. Math. Soc., Providence, R.I. 1968.
[R] Rákosník J.: Some remarks to anisotropic Sobolev spaces. I. Beiträge zur Analysis 13 (1979), 55-68. | MR
[W] Weidemaier P.: Local existence for parabolic problems with fully nonlinear boundary condition; an $L^p$-approach. to appear in Ann. mat. pura appl.
[W/Z] Wheeden R. L., Zygmund A.: Measure and Integral. New York - Basel: Dekker 1977. | MR | Zbl