Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 297-305 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the nonlinear Dirichlet problem $$ -u'' -r(x)|u|^\sigma u= \lambda u \text{ in } (0,\infty ), \, u(0)=0 \text{ and } \lim _{x\rightarrow \infty } u(x)=0, $$ and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^{1,2} (0,\infty )$ and in $L^p(0,\infty )\, (2\leq p\leq \infty )$.
We consider the nonlinear Dirichlet problem $$ -u'' -r(x)|u|^\sigma u= \lambda u \text{ in } (0,\infty ), \, u(0)=0 \text{ and } \lim _{x\rightarrow \infty } u(x)=0, $$ and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^{1,2} (0,\infty )$ and in $L^p(0,\infty )\, (2\leq p\leq \infty )$.
Classification : 34A47, 34B15, 34C11, 34C23
Keywords: nonlinear Dirichlet problem; classical solution; bifurcation point; ordinary differential equation
@article{CMUC_1991_32_2_a11,
     author = {Rother, Wolfgang},
     title = {Existence and bifurcation results for a class  of nonlinear boundary value problems in $(0,\infty )$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {297--305},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137791},
     zbl = {0749.34016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a11/}
}
TY  - JOUR
AU  - Rother, Wolfgang
TI  - Existence and bifurcation results for a class  of nonlinear boundary value problems in $(0,\infty )$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 297
EP  - 305
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a11/
LA  - en
ID  - CMUC_1991_32_2_a11
ER  - 
%0 Journal Article
%A Rother, Wolfgang
%T Existence and bifurcation results for a class  of nonlinear boundary value problems in $(0,\infty )$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 297-305
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a11/
%G en
%F CMUC_1991_32_2_a11
Rother, Wolfgang. Existence and bifurcation results for a class  of nonlinear boundary value problems in $(0,\infty )$. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 297-305. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a11/

[1] Adams R.A.: Sobolev Spaces. Academic Press, New York, 1975. | MR | Zbl

[2] Berger M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Analysis 9 (1972), 249-261. | MR | Zbl

[3] Brezis H., Kato T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. pures et appl. 58 (1979), 137-151. | MR | Zbl

[4] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. SpringerVerlag, Berlin, Heidelberg, New York, 1983. | MR | Zbl

[5] Hörmander L.: Linear Partial Differential Operators. Springer-Verlag, Berlin, Heidelberg, New York, 1976. | MR

[6] Stuart C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc. (3) 45 (1982), 169-192. | MR | Zbl