Keywords: nonlinear Dirichlet problem; classical solution; bifurcation point; ordinary differential equation
@article{CMUC_1991_32_2_a11,
author = {Rother, Wolfgang},
title = {Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {297--305},
year = {1991},
volume = {32},
number = {2},
mrnumber = {1137791},
zbl = {0749.34016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a11/}
}
TY - JOUR AU - Rother, Wolfgang TI - Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 297 EP - 305 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a11/ LA - en ID - CMUC_1991_32_2_a11 ER -
%0 Journal Article %A Rother, Wolfgang %T Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$ %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 297-305 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a11/ %G en %F CMUC_1991_32_2_a11
Rother, Wolfgang. Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 297-305. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a11/
[1] Adams R.A.: Sobolev Spaces. Academic Press, New York, 1975. | MR | Zbl
[2] Berger M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Analysis 9 (1972), 249-261. | MR | Zbl
[3] Brezis H., Kato T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. pures et appl. 58 (1979), 137-151. | MR | Zbl
[4] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. SpringerVerlag, Berlin, Heidelberg, New York, 1983. | MR | Zbl
[5] Hörmander L.: Linear Partial Differential Operators. Springer-Verlag, Berlin, Heidelberg, New York, 1976. | MR
[6] Stuart C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc. (3) 45 (1982), 169-192. | MR | Zbl