Some new classes of topological vector spaces with closed graph theorems
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 287-296 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.
In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.
Classification : 46A16, 46A30, 47A05
Keywords: inverse seminorm; Mackey seminorm; nearly-semi-continuous; semi-barrelled; semi-$B$-complete; semi-infra-(s); semi-Mackey
@article{CMUC_1991_32_2_a10,
     author = {Rodrigues, Brian},
     title = {Some new classes of topological vector spaces  with closed graph theorems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {287--296},
     year = {1991},
     volume = {32},
     number = {2},
     mrnumber = {1137790},
     zbl = {0778.46006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a10/}
}
TY  - JOUR
AU  - Rodrigues, Brian
TI  - Some new classes of topological vector spaces  with closed graph theorems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 287
EP  - 296
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a10/
LA  - en
ID  - CMUC_1991_32_2_a10
ER  - 
%0 Journal Article
%A Rodrigues, Brian
%T Some new classes of topological vector spaces  with closed graph theorems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 287-296
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a10/
%G en
%F CMUC_1991_32_2_a10
Rodrigues, Brian. Some new classes of topological vector spaces  with closed graph theorems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 2, pp. 287-296. http://geodesic.mathdoc.fr/item/CMUC_1991_32_2_a10/

[1] Adasch N.: Topologische Produkte gewisser topologischer Vectorräume. Math. Ann. 186 (1970), 280-284. | MR

[2] Adasch N.: Tonnelierte Räume und zwei Sätze von Banach. Math. Ann. 186 (1970), 209-214. | MR | Zbl

[3] Adasch N.: Eine Bemerkung über den Graphensatz. Math. Ann. 186 (1970), 327-333. | MR | Zbl

[4] Adasch N.: Der Graphensatz in topologischen Vectorräumen. Math. Z. 119 (1971), 131-142. | MR

[5] Adasch N.: Vollständigkeit und der Graphensatz. J. reine angew. Math. 249 (1971), 217-220. | MR | Zbl

[6] Adasch N., Ernst B., Keim D.: Topological vector spaces, The theory without local convexity conditions. Lecture Notes in Mathematics, 639, Eds. A. Dodd and B. Eckmann, Springer-Verlag, Berlin, Heidelberg, New York, 1978. | MR

[7] Beckenstein E., Narici L.: Topological vector spaces. Marcel Dekker, Inc., New York and Basel, 1985. | MR | Zbl

[8] Horváth J.: Locally convex spaces. Lecture Notes in Mathematics, 331, Ed. L. Waelbroeck, Springer-Verlag, New York, Heidelberg, Berlin, 1973. | MR

[9] Iyahen S.O.: On certain classes of topological spaces. Proc. London Math. Soc. (3) 18 (1968), 285-307. | MR

[10] Iyahen S.O.: Semiconvex spaces. Glasgow J. Math. 9 (1968), 111-118. | MR | Zbl

[11] Jarchow H.: Locally convex spaces. B.G. Tuebner, Stuttgart, 1981. | MR | Zbl

[12] Kelley J., Namioka I.: Linear topological spaces. Van Nostrand, Princeton, 1963. | MR | Zbl

[13] Köthe G.: General linear transformations of locally convex spaces. Math. Ann. 159 (1965), 309-328. | MR

[14] Köthe G.: Topological vector spaces I,II. Springer-Verlag, New York, Heidelberg, Berlin, 1979. | MR

[15] Kōmura Y.: On linear topological spaces. Kumamoto J. Sci., Ser.A 5 No. 3 (1962), 148-157. | MR

[16] Powell M.: On Komura's closed-graph theorem. Trans. AMS 211 (1975), 391-426. | MR | Zbl

[17] Pták V.: Completeness and the open mapping theorem. Bull. Soc. Math. France 86 (1958), 41-74. | MR

[18] Raikov D.A.: Closed graph theorem and completeness. Proc. 4th All Union Math. Congress, Leningrad, 1961.

[19] Robertson W.: Completions of topological vector spaces. Proc. London Math. Soc. 8 (1958), 242-257. | MR | Zbl

[20] Robertson A., Robertson W.: On the closed graph theorem. Proc. Glasgow Math. Assoc. 3 (1956), 9-12. | MR | Zbl

[21] Rodrigues B.: On the Pták homomorphism theorem. J. Aust. Math. Soc. Ser. A 47 (1989), 322-333. | MR | Zbl

[22] Schaefer H.H.: Topological vector spaces. Springer-Verlag, New York, Heidelberg, Berlin, 1986. | MR | Zbl

[23] Tomášek S.: M-barrelled spaces. Comment. Math. Univ. Carolinae 11 (1970), 185-204. | MR

[24] Tomášek S.: M-bornological spaces. Comment. Math. Univ. Carolinae 11 (1970), 235-248. | MR

[25] Valdivia Ure na M.: El teorema general de la gráfica cerrada en los espacios vectoriales topológicos localmente convexos. Rev. Real Acad. Ci. Exact. Fis. Nat. Madrid 62 (1968), 545-551. | MR

[26] Valdivia M.: Sobre el teorema de la gráfica cerreda. Collectanea Math. 22 (1971), 51-72.

[27] Valdivia M.: Locally convex spaces. Mathematics Studies 67, North-Holland, Amsterdam, New York, Oxford, 1982. | MR | Zbl