Properties of forcing preserved by finite support iterations
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 95-103
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We shall investigate some properties of forcing which are preserved by finite support iterations and which ensure that unbounded families in given partially ordered sets remain unbounded.
We shall investigate some properties of forcing which are preserved by finite support iterations and which ensure that unbounded families in given partially ordered sets remain unbounded.
Classification : 03E40
Keywords: forcing; unbounded family
@article{CMUC_1991_32_1_a9,
     author = {Repick\'y, Miroslav},
     title = {Properties of forcing preserved by finite support iterations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {95--103},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118292},
     zbl = {0736.03017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a9/}
}
TY  - JOUR
AU  - Repický, Miroslav
TI  - Properties of forcing preserved by finite support iterations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 95
EP  - 103
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a9/
LA  - en
ID  - CMUC_1991_32_1_a9
ER  - 
%0 Journal Article
%A Repický, Miroslav
%T Properties of forcing preserved by finite support iterations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 95-103
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a9/
%G en
%F CMUC_1991_32_1_a9
Repický, Miroslav. Properties of forcing preserved by finite support iterations. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 95-103. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a9/

[1] Bartoszyński T.: Additivity of measure implies additivity of category. Trans. Amer. Math. Soc.209-213 (1984),281, 1. | MR

[2] Bukovský L.: $\nabla$-models and distributivity in Boolean algebras. Comment. Math. Univ. Carol.595-612 (1968),9, 4. | MR

[3] Bukovský L., Recław I., Repický M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions. Topology Appl.\toappear.

[4] Cichoń J., Pawlikowski J.: On ideals of subsets of the plane and on Cohen real. J. Symb. Logic 560-569 (1986),51, 3. | MR

[5] Fremlin D. H.: Cichoń's diagram. Publ. Math. Univ. Pierre Marie Curie 66 Semin. Initiation Anal. 23eme Anee-1983/84 Exp. No. 5, 13p.(1984). | Zbl

[6] Ihoda J., Shelah S.: The Lebesgue measure and the Baire property: Laver's reals, preservation theorem for forcing, completing a chart of Kunen-Miller. preprint.

[7] Jech T.: Set Theory. Academic Press, 1978. | MR | Zbl

[8] Kamburelis A.: Iterations of Boolean algebras with measure. Arch. Math. Logic21-28 (1989),29. | MR | Zbl

[9] Krawczyk A.: $B(m)+A(c)\nrightarrow A(m)$. preprint.

[10] Miller A. W.: Some properties of measure and category. Trans. Amer. Math. Soc.93-114 (1981), 266. | MR | Zbl

[11] Raisonier J., Stern J.: The strength of measurability hypothesis. Israel J. Math.337-349 (1985),50, 4. | MR

[12] Repický M.: Porous sets and additivity of Lebesgue measure. Real Analysis Exchange, 1989-1990. | MR

[13] Truss J.K.: Sets having caliber $\aleph_1$. Proc. Logic Colloquium `76, Studies in Logic 595-612 (1977),87. | MR