Keywords: alternative set theory; commutative $\pi $-group; free group; inverse system of Sd-classes and Sd-maps; prolongation; set-definable; tensor product; total homomorphism
@article{CMUC_1991_32_1_a8,
author = {Guri\v{c}an, Jaroslav},
title = {Homology theory in the alternative set theory {I.} {Algebraic} preliminaries},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {75--93},
year = {1991},
volume = {32},
number = {1},
mrnumber = {1118291},
zbl = {0735.03032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a8/}
}
TY - JOUR AU - Guričan, Jaroslav TI - Homology theory in the alternative set theory I. Algebraic preliminaries JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 75 EP - 93 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a8/ LA - en ID - CMUC_1991_32_1_a8 ER -
Guričan, Jaroslav. Homology theory in the alternative set theory I. Algebraic preliminaries. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 75-93. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a8/
[C] McCord M.C.: Non-standard analysis and homology. Fund. Math. 74 (1972), 21-28. | MR | Zbl
[G] Garavaglia S.: Homology with equationally compact coefficients. Fund. Math. 100 (1978), 89-95. | MR | Zbl
[E-S] Eilenberg S., Steenrod N.: Foundations of algebraic topology. Princeton Press, 1952. | MR | Zbl
[H-W] Hilton P.J., Wylie S.: Homology Theory. Cambridge University Press, Cambridge, 1960. | MR | Zbl
[S-V] Sochor A., Vopěnka P.: Endomorphic universes and their standard extensions. Comment. Math. Univ. Carolinae 20 (1979), 605-629. | MR
[V1] Vopěnka P.: Mathematics in the alternative set theory. Teubner-Texte, Leipzig, 1979. | MR
[V2] Vopěnka P.: Mathematics in the alternative set theory (in Slovak). Alfa, Bratislava, 1989.
[W] Wattenberg F.: Non-standard analysis and the theory of shape. Fund. Math. 98 (1978), 41-60. | MR
[Ž1] Živaljevič R.T.: Infinitesimals, microsimplexes and elementary homology theory. AMM 93 (1986), 540-544. | MR
[Ž2] Živaljevič R.T.: On a cohomology theory based on hyperfinite sums of microsimplexes. Pacific J. Math. 128 (1987), 201-208. | MR