Keywords: strongly damped beam equation; compact attractor; upper semicontinuity of global attractors
@article{CMUC_1991_32_1_a6,
author = {\v{S}ev\v{c}ovi\v{c}, Daniel},
title = {Limiting behavior of global attractors for singularly perturbed beam equations with strong damping},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {45--60},
year = {1991},
volume = {32},
number = {1},
mrnumber = {1118289},
zbl = {0741.35089},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a6/}
}
TY - JOUR AU - Ševčovič, Daniel TI - Limiting behavior of global attractors for singularly perturbed beam equations with strong damping JO - Commentationes Mathematicae Universitatis Carolinae PY - 1991 SP - 45 EP - 60 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a6/ LA - en ID - CMUC_1991_32_1_a6 ER -
%0 Journal Article %A Ševčovič, Daniel %T Limiting behavior of global attractors for singularly perturbed beam equations with strong damping %J Commentationes Mathematicae Universitatis Carolinae %D 1991 %P 45-60 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a6/ %G en %F CMUC_1991_32_1_a6
Ševčovič, Daniel. Limiting behavior of global attractors for singularly perturbed beam equations with strong damping. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 45-60. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a6/
[BV] Babin A.B., Vishik M.N.: Attraktory evolucionnych uravnenij s častnymi proizvodnymi i ocenki ich razmernosti (in Russian). Uspechi mat. nauk 38 (1983), 133-185. | MR
[B1] Ball J.M.: Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl. 42 (1973), 61-96. | MR | Zbl
[B2] Ball J.M.: Stability theory for an extensible beam. J. of Diff. Equations 14 (1973), 399-418. | MR | Zbl
[ChL] Chow S.-N., Lu K.: Invariant manifolds for flows in Banach spaces. J. of Diff. Equations 74 (1988), 285-317. | MR | Zbl
[F] Fitzgibbon W.E.: Strongly damped quasilinear evolution equations. J. of Math. Anal. Appl. 79 (1981), 536-550. | MR | Zbl
[GT] Ghidaglia J.M., Temam R.: Attractors for damped nonlinear hyperbolic equations. J. de Math. Pures et Appl. 79 (1987), 273-319. | MR | Zbl
[H] Henry D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840, Springer Verlag. | MR | Zbl
[HR1] Hale J.K., Rougel G.: Upper semicontinuity of an attractor for a singularly perturbed hyperbolic equations. J. of Diff. Equations 73 (1988), 197-215. | MR
[HR2] Hale J.K., Rougel G.: Lower semicontinuity of an attractor for a singularly perturbed hyperbolic equations. Journal of Dynamics and Diff. Equations 2 (1990), 16-69. | MR
[M1] Massat P.: Limiting behavior for strongly damped nonlinear wave equations. J. of Diff. Equations 48 (1983), 334-349. | MR
[M2] Massat P.: Attractivity properties of $\alpha $-contractions. J. of Diff. Equations 48 (1983), 326-333. | MR