Locally convex topologies in linear orthogonality spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 33-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we investigate the existence and characterizations of locally convex topologies in a linear orthogonality space.
In this paper, we investigate the existence and characterizations of locally convex topologies in a linear orthogonality space.
Classification : 46A03, 46A15, 46A16, 46A22, 46C99
Keywords: locally convex space; orthogonality space; Hahn--Banach extension property
@article{CMUC_1991_32_1_a4,
     author = {K\k{a}kol, Jerzy and Sorjonen, Pekka},
     title = {Locally convex topologies  in linear orthogonality spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {33--37},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118287},
     zbl = {0749.46002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a4/}
}
TY  - JOUR
AU  - Kąkol, Jerzy
AU  - Sorjonen, Pekka
TI  - Locally convex topologies  in linear orthogonality spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 33
EP  - 37
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a4/
LA  - en
ID  - CMUC_1991_32_1_a4
ER  - 
%0 Journal Article
%A Kąkol, Jerzy
%A Sorjonen, Pekka
%T Locally convex topologies  in linear orthogonality spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 33-37
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a4/
%G en
%F CMUC_1991_32_1_a4
Kąkol, Jerzy; Sorjonen, Pekka. Locally convex topologies  in linear orthogonality spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 33-37. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a4/

[1] Kąkol J.: Basic sequences and non locally convex topological vector spaces. Rend. Circ. Mat. Palermo (2) 36 (1987), 95-102. | MR

[2] Kalton N.J., Peck N.T., Roberts J.W.: An F-space sampler. vol. 89 of London Mathematical Society Lecture Note Series, Cambridge University Press, 1984. | MR | Zbl

[3] Piziak R.: Mackey closure operators. J. London Math. Soc. 4 (1971), 33-38. | MR | Zbl

[4] Piziak R.: Sesquilinear forms in infinite dimensions. Pacific J. Math. 43 (2) (1972), 475-481. | MR | Zbl

[5] Sorjonen P.: Lattice-theoretical characterizations of inner product spaces. Studia Sci. Math. Hungarica 19 (1984), 141-149. | MR | Zbl

[6] Sorjonen P.: Hahn-Banach extension properties in linear orthogonality spaces. Funct. Approximatio, Comment. Math., to appear. | MR | Zbl

[7] Wilbur W.J.: Quantum logic and the locally convex spaces. Trans. Amer. Math. Soc. 207 (1975), 343-360. | MR | Zbl